These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19921324)

  • 1. A mathematical model of action potential in cells of vascular plants.
    Sukhov V; Vodeneev V
    J Membr Biol; 2009 Dec; 232(1-3):59-67. PubMed ID: 19921324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of action potential propagation in plants.
    Sukhov V; Nerush V; Orlova L; Vodeneev V
    J Theor Biol; 2011 Dec; 291():47-55. PubMed ID: 21959317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of variation potential in higher plant cells.
    Sukhov V; Akinchits E; Katicheva L; Vodeneev V
    J Membr Biol; 2013 Apr; 246(4):287-96. PubMed ID: 23417063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human red cell voltage-regulated cation channel. The interplay with the chloride conductance, the Ca(2+)-activated K(+) channel and the Ca(2+) pump.
    Bennekou P; Kristensen BI; Christophersen P
    J Membr Biol; 2003 Sep; 195(1):1-8. PubMed ID: 14502420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Potassium transport in yeast].
    López R; Peña A
    Rev Latinoam Microbiol; 1999; 41(2):91-103. PubMed ID: 10970213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+ pumping ATPase of cardiac sarcolemma is insensitive to membrane potential produced by K+ and Cl- gradients but requires a source of counter-transportable H+.
    Dixon DA; Haynes DH
    J Membr Biol; 1989 Dec; 112(2):169-83. PubMed ID: 2560063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of the role of Cl- channels in Ca2+ translocation through endoplasmic reticulum membrane.
    Artinian LR; Dunin-Barkowski WL; Chailakhyan LM
    Dokl Biochem Biophys; 2006; 409():206-10. PubMed ID: 16986432
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of Ca2+-dependent Cl- current on delayed afterdepolarizations. A simulation study.
    Gomis-Tena J; Saiz J
    Ann Biomed Eng; 2008 May; 36(5):752-61. PubMed ID: 18274905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane.
    Wieczorek H; Putzenlechner M; Zeiske W; Klein U
    J Biol Chem; 1991 Aug; 266(23):15340-7. PubMed ID: 1831202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K(+) current regulates calcium-activated chloride current-induced after depolarization in axotomized sensory neurons.
    Hilaire C; Campo B; André S; Valmier J; Scamps F
    Eur J Neurosci; 2005 Sep; 22(5):1073-80. PubMed ID: 16176348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L.
    Cosgrove DJ; Hedrich R
    Planta; 1991 Dec; 186(1):143-53. PubMed ID: 11538499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input.
    Schild JH; Khushalani S; Clark JW; Andresen MC; Kunze DL; Yang M
    J Physiol; 1993 Sep; 469():341-63. PubMed ID: 7505824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans.
    Franks CJ; Pemberton D; Vinogradova I; Cook A; Walker RJ; Holden-Dye L
    J Neurophysiol; 2002 Feb; 87(2):954-61. PubMed ID: 11826060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of ion transport regulation in chloride-secreting airway epithelial cells. Integrated description of electrical, chemical, and fluorescence measurements.
    Hartmann T; Verkman AS
    Biophys J; 1990 Aug; 58(2):391-401. PubMed ID: 1698471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical patterns during Drosophila oogenesis: ion-transport mechanisms generate stage-specific gradients of pH and membrane potential in the follicle-cell epithelium.
    Weiß I; Bohrmann J
    BMC Dev Biol; 2019 Jun; 19(1):12. PubMed ID: 31226923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH.
    Blatt MR
    J Gen Physiol; 1992 Apr; 99(4):615-44. PubMed ID: 1534573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical model of outer hair cell regulation including ion transport and cell motility.
    O'Beirne GA; Patuzzi RB
    Hear Res; 2007 Dec; 234(1-2):29-51. PubMed ID: 17981412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic channels of the vacuolar membrane of higher plants.
    Tikhonova LI
    Membr Cell Biol; 1998; 12(3):301-18. PubMed ID: 10024965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature sensing by plants: calcium-permeable channels as primary sensors--a model.
    Plieth C
    J Membr Biol; 1999 Nov; 172(2):121-7. PubMed ID: 10556360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells.
    Silva HS; Kapela A; Tsoukias NM
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C277-93. PubMed ID: 17459942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.