These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19921509)

  • 21. Bidirectional microfluidic pumping using an array of magnetic Janus microspheres rotating around magnetic disks.
    van den Beld WT; Cadena NL; Bomer J; de Weerd EL; Abelmann L; van den Berg A; Eijkel JC
    Lab Chip; 2015 Jul; 15(13):2872-8. PubMed ID: 26030131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative characterization of magnetic separators: comparison of systems with and without integrated microfluidic mixers.
    Lund-Olesen T; Bruus H; Hansen MF
    Biomed Microdevices; 2007 Apr; 9(2):195-205. PubMed ID: 17165127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling the selection stringency of phage display using a microfluidic device.
    Liu Y; Adams JD; Turner K; Cochran FV; Gambhir SS; Soh HT
    Lab Chip; 2009 Apr; 9(8):1033-6. PubMed ID: 19350081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model for predicting magnetic particle capture in a microfluidic bioseparator.
    Furlani EP; Sahoo Y; Ng KC; Wortman JC; Monk TE
    Biomed Microdevices; 2007 Aug; 9(4):451-63. PubMed ID: 17516176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical methods for separating and isolating magnetic nanoparticles.
    Stephens JR; Beveridge JS; Williams ME
    Phys Chem Chem Phys; 2012 Mar; 14(10):3280-9. PubMed ID: 22306911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustofluidics 20: applications in acoustic trapping.
    Evander M; Nilsson J
    Lab Chip; 2012 Nov; 12(22):4667-76. PubMed ID: 23047553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes.
    Yang L; Banada PP; Chatni MR; Seop Lim K; Bhunia AK; Ladisch M; Bashir R
    Lab Chip; 2006 Jul; 6(7):896-905. PubMed ID: 16804594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid, multistep on-chip DNA hybridisation in continuous flow on magnetic particles.
    Vojtísek M; Iles A; Pamme N
    Biosens Bioelectron; 2010 May; 25(9):2172-6. PubMed ID: 20181469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV
    Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a novel magnetophoresis-assisted hydrophoresis microdevice for rapid particle ordering.
    Yan S; Zhang J; Chen H; Yuan D; Alici G; Du H; Zhu Y; Li W
    Biomed Microdevices; 2016 Aug; 18(4):54. PubMed ID: 27289469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous separation principles using external microaction forces.
    Watarai H
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():353-78. PubMed ID: 23772659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A journey of trains of droplets in droplet-based microfluidic devices.
    Lee H; Xu L; Oh KW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():778-81. PubMed ID: 25570074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous bioassays in a microfluidic channel on plugs of different magnetic particles.
    Bronzeau S; Pamme N
    Anal Chim Acta; 2008 Feb; 609(1):105-12. PubMed ID: 18243878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel.
    Choi S; Park JK
    Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoslit membrane-integrated fluidic chip for protein detection based on size-dependent particle trapping.
    Koh Y; Kang H; Lee SH; Yang JK; Kim JH; Lee YS; Kim YK
    Lab Chip; 2014 Jan; 14(1):237-43. PubMed ID: 24202619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force.
    Zhang K; Liang Q; Ma S; Mu X; Hu P; Wang Y; Luo G
    Lab Chip; 2009 Oct; 9(20):2992-9. PubMed ID: 19789755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.