These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19921677)

  • 21. Digital microfluidics and delivery of molecular payloads with magnetic porous silicon chaperones.
    Dorvee JR; Sailor MJ; Miskelly GM
    Dalton Trans; 2008 Feb; (6):721-30. PubMed ID: 18239825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model based design of a microfluidic mixer driven by induced charge electroosmosis.
    Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP
    Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A millisecond micromixer via single-bubble-based acoustic streaming.
    Ahmed D; Mao X; Shi J; Juluri BK; Huang TJ
    Lab Chip; 2009 Sep; 9(18):2738-41. PubMed ID: 19704991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel in-plane passive microfluidic mixer with modified Tesla structures.
    Hong CC; Choi JW; Ahn CH
    Lab Chip; 2004 Apr; 4(2):109-13. PubMed ID: 15052349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical and experimental characterization of a novel modular passive micromixer.
    Pennella F; Rossi M; Ripandelli S; Rasponi M; Mastrangelo F; Deriu MA; Ridolfi L; Kähler CJ; Morbiducci U
    Biomed Microdevices; 2012 Oct; 14(5):849-62. PubMed ID: 22711456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size.
    Zagnoni M; Cooper JM
    Lab Chip; 2009 Sep; 9(18):2652-8. PubMed ID: 19704980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel.
    Chen JK; Weng CN; Yang RJ
    Lab Chip; 2009 May; 9(9):1267-73. PubMed ID: 19370247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An ultrashort mixing length micromixer: the shear superposition micromixer.
    Bottausci F; Cardonne C; Meinhart C; Mezić I
    Lab Chip; 2007 Mar; 7(3):396-8. PubMed ID: 17330174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and simulation of the micromixer with chaotic advection in twisted microchannels.
    Jen CP; Wu CY; Lin YC; Wu CY
    Lab Chip; 2003 May; 3(2):77-81. PubMed ID: 15100786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
    Chang ST; Beaumont E; Petsev DN; Velev OD
    Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic T-form mixer utilizing switching electroosmotic flow.
    Lin CH; Fu LM; Chien YS
    Anal Chem; 2004 Sep; 76(18):5265-72. PubMed ID: 15362882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic pool structure for cell docking and rapid mixing.
    Yang J; Yang J; Yin ZQ; Svir I; Xu J; Luo HY; Wang M; Cao Y; Hu N; Liao YJ; Zheng XL
    Anal Chim Acta; 2009 Feb; 634(1):61-7. PubMed ID: 19154811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and evaluation of a Dean vortex-based micromixer.
    Howell PB; Mott DR; Golden JP; Ligler FS
    Lab Chip; 2004 Dec; 4(6):663-9. PubMed ID: 15570382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast active mixer using polyelectrolytic ion extractor.
    Chun H; Kim HC; Chung TD
    Lab Chip; 2008 May; 8(5):764-71. PubMed ID: 18432347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Batch-mode mixing on centrifugal microfluidic platforms.
    Grumann M; Geipel A; Riegger L; Zengerle R; Ducrée J
    Lab Chip; 2005 May; 5(5):560-5. PubMed ID: 15856095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined microfluidic-micromagnetic separation of living cells in continuous flow.
    Xia N; Hunt TP; Mayers BT; Alsberg E; Whitesides GM; Westervelt RM; Ingber DE
    Biomed Microdevices; 2006 Dec; 8(4):299-308. PubMed ID: 17003962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of combined DC and AC magnetic fields on germination of hornwort seeds.
    Kobayashi M; Soda N; Miyo T; Ueda Y
    Bioelectromagnetics; 2004 Oct; 25(7):552-9. PubMed ID: 15376241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system.
    Lien KY; Lin JL; Liu CY; Lei HY; Lee GB
    Lab Chip; 2007 Jul; 7(7):868-75. PubMed ID: 17594006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.