BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 19921773)

  • 1. Influence of original flap creation method on incidence of epithelial ingrowth after LASIK retreatment.
    Letko E; Price MO; Price FW
    J Refract Surg; 2009 Nov; 25(11):1039-41. PubMed ID: 19921773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence of epithelial ingrowth in primary and retreatment laser in situ keratomileusis.
    Caster AI; Friess DW; Schwendeman FJ
    J Cataract Refract Surg; 2010 Jan; 36(1):97-101. PubMed ID: 20117711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser-assisted retreatment for residual refractive errors after laser in situ keratomileusis.
    Vaddavalli PK; Yoo SH; Diakonis VF; Canto AP; Shah NV; Haddock LJ; Feuer WJ; Culbertson WW
    J Cataract Refract Surg; 2013 Aug; 39(8):1241-7. PubMed ID: 23711874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the effects of LASIK retreatment techniques on epithelial ingrowth rates.
    Chan CC; Boxer Wachler BS
    Ophthalmology; 2007 Apr; 114(4):640-2. PubMed ID: 17156846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial ingrowth after femtosecond laser-assisted in situ keratomileusis.
    Kamburoğlu G; Ertan A
    Cornea; 2008 Dec; 27(10):1122-5. PubMed ID: 19034125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epithelial ingrowth after LASIK: clinical characteristics, risk factors, and visual outcomes in patients requiring flap lift.
    Henry CR; Canto AP; Galor A; Vaddavalli PK; Culbertson WW; Yoo SH
    J Refract Surg; 2012 Jul; 28(7):488-92. PubMed ID: 22716032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flap relift for retreatment after femtosecond laser-assisted LASIK.
    Santhiago MR; Smadja D; Zaleski K; Espana EM; Armstrong BK; Wilson SE
    J Refract Surg; 2012 Jul; 28(7):482-7. PubMed ID: 22767166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of corneal curvature change after mechanical laser in situ keratomileusis flap creation and femtosecond laser flap creation.
    Ortiz D; Alió JL; Piñero D
    J Cataract Refract Surg; 2008 Feb; 34(2):238-42. PubMed ID: 18242446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Management of epithelial ingrowth after laser in situ keratomileusis on a tertiary care cornea service.
    Rapuano CJ
    Cornea; 2010 Mar; 29(3):307-13. PubMed ID: 20098302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retreatment after laser in situ keratomileusis.
    Pérez-Santonja JJ; Ayala MJ; Sakla HF; Ruíz-Moreno JM; Alió JL
    Ophthalmology; 1999 Jan; 106(1):21-8. PubMed ID: 9917776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incidence, management, and visual outcomes of buttonholed laser in situ keratomileusis flaps.
    Al-Mezaine HS; Al-Amro SA; Al-Obeidan S
    J Cataract Refract Surg; 2009 May; 35(5):839-45. PubMed ID: 19393882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complications of LASIK flaps made by the IntraLase 15- and 30-kHz femtosecond lasers.
    Haft P; Yoo SH; Kymionis GD; Ide T; O'Brien TP; Culbertson WW
    J Refract Surg; 2009 Nov; 25(11):979-84. PubMed ID: 19921765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the refractive index of the human corneal stroma during laser in situ keratomileusis. Effects of exposure time and method used to create the flap.
    Patel S; Alió JL; Artola A
    J Cataract Refract Surg; 2008 Jul; 34(7):1077-82. PubMed ID: 18571072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser versus mechanical microkeratome for LASIK: a randomized controlled study.
    Patel SV; Maguire LJ; McLaren JW; Hodge DO; Bourne WM
    Ophthalmology; 2007 Aug; 114(8):1482-90. PubMed ID: 17350688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond laser versus mechanical microkeratomes for flap creation in laser in situ keratomileusis and effect of postoperative measurement interval on estimated femtosecond flap thickness.
    Rosa AM; Neto Murta J; Quadrado MJ; Tavares C; Lobo C; Van Velze R; Castanheira-Dinis A
    J Cataract Refract Surg; 2009 May; 35(5):833-8. PubMed ID: 19393881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography.
    von Jagow B; Kohnen T
    J Cataract Refract Surg; 2009 Jan; 35(1):35-41. PubMed ID: 19101422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flaporhexis: rapid and effective technique to limit epithelial ingrowth after LASIK enhancement.
    Wilson SE; Santhiago MR
    J Cataract Refract Surg; 2012 Jan; 38(1):2-4. PubMed ID: 22082751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early flap displacement after LASIK.
    Clare G; Moore TC; Grills C; Leccisotti A; Moore JE; Schallhorn S
    Ophthalmology; 2011 Sep; 118(9):1760-5. PubMed ID: 21550119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of laser in situ keratomileusis interface epithelial ingrowth with neodymium:yytrium-aluminum-garnet laser.
    Ayala MJ; Alió JL; Mulet ME; De La Hoz F
    Am J Ophthalmol; 2008 Apr; 145(4):630-634. PubMed ID: 18242573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: potential impact on wavefront-guided laser in situ keratomileusis.
    Tran DB; Sarayba MA; Bor Z; Garufis C; Duh YJ; Soltes CR; Juhasz T; Kurtz RM
    J Cataract Refract Surg; 2005 Jan; 31(1):97-105. PubMed ID: 15721701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.