BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19921775)

  • 1. Bipolar electrode focusing: the effect of current and electric field on concentration enrichment.
    Perdue RK; Laws DR; Hlushkou D; Tallarek U; Crooks RM
    Anal Chem; 2009 Dec; 81(24):10149-55. PubMed ID: 19921775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bipolar electrode focusing: tuning the electric field gradient.
    Anand RK; Sheridan E; Hlushkou D; Tallarek U; Crooks RM
    Lab Chip; 2011 Feb; 11(3):518-27. PubMed ID: 21120239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bipolar electrode focusing: faradaic ion concentration polarization.
    Anand RK; Sheridan E; Knust KN; Crooks RM
    Anal Chem; 2011 Mar; 83(6):2351-8. PubMed ID: 21351782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free electrochemical monitoring of concentration enrichment during bipolar electrode focusing.
    Sheridan E; Hlushkou D; Anand RK; Laws DR; Tallarek U; Crooks RM
    Anal Chem; 2011 Sep; 83(17):6746-53. PubMed ID: 21815639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field gradient focusing in microchannels with embedded bipolar electrode.
    Hlushkou D; Perdue RK; Dhopeshwarkar R; Crooks RM; Tallarek U
    Lab Chip; 2009 Jul; 9(13):1903-13. PubMed ID: 19532966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetics in microfluidic channels containing a floating electrode.
    Dhopeshwarkar R; Hlushkou D; Nguyen M; Tallarek U; Crooks RM
    J Am Chem Soc; 2008 Aug; 130(32):10480-1. PubMed ID: 18642919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipolar electrode focusing: simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode.
    Laws DR; Hlushkou D; Perdue RK; Tallarek U; Crooks RM
    Anal Chem; 2009 Nov; 81(21):8923-9. PubMed ID: 19874055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bipolar electrode depletion: membraneless filtration of charged species using an electrogenerated electric field gradient.
    Sheridan E; Knust KN; Crooks RM
    Analyst; 2011 Oct; 136(20):4134-7. PubMed ID: 21869950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microchannel plate as a novel bipolar electrode for high-performance enrichment of anions.
    Cao Z; Yobas L
    Electrophoresis; 2013 Jul; 34(14):1991-7. PubMed ID: 24024243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes.
    Ordeig O; Godino N; del Campo J; Muñoz FX; Nikolajeff F; Nyholm L
    Anal Chem; 2008 May; 80(10):3622-32. PubMed ID: 18386910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of cations via bipolar electrode focusing.
    Sheridan E; Hlushkou D; Knust KN; Tallarek U; Crooks RM
    Anal Chem; 2012 Sep; 84(17):7393-9. PubMed ID: 22891868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-channel bipolar electrode focusing: simultaneous separation and enrichment of both anions and cations.
    Knust KN; Sheridan E; Anand RK; Crooks RM
    Lab Chip; 2012 Oct; 12(20):4107-14. PubMed ID: 22952054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow.
    Ng WY; Ramos A; Lam YC; Wijaya IP; Rodriguez I
    Lab Chip; 2011 Dec; 11(24):4241-7. PubMed ID: 22052533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-channel microelectrochemical bipolar electrode sensor array.
    Chang BY; Chow KF; Crooks JA; Mavré F; Crooks RM
    Analyst; 2012 Jun; 137(12):2827-33. PubMed ID: 22576232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling between electroosmotically driven flow and bipolar faradaic depolarization processes in electron-conducting microchannels.
    Qian S; Duval JF
    J Colloid Interface Sci; 2006 May; 297(1):341-52. PubMed ID: 16289127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microchannel protein separation by electric field gradient focusing.
    Petsev DN; Lopez GP; Ivory CF; Sibbett SS
    Lab Chip; 2005 Jun; 5(6):587-97. PubMed ID: 15915250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature gradient focusing with field-amplified continuous sample injection for dual-stage analyte enrichment and separation.
    Munson MS; Danger G; Shackman JG; Ross D
    Anal Chem; 2007 Aug; 79(16):6201-7. PubMed ID: 17616169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model based design of a microfluidic mixer driven by induced charge electroosmosis.
    Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP
    Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.