BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19921775)

  • 21. Finite sample effect in temperature gradient focusing.
    Lin H; Shackman JG; Ross D
    Lab Chip; 2008 Jun; 8(6):969-78. PubMed ID: 18497919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pressure-driven bipolar electrochemistry.
    Dumitrescu I; Anand RK; Fosdick SE; Crooks RM
    J Am Chem Soc; 2011 Apr; 133(13):4687-9. PubMed ID: 21405016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative dielectrophoretic capture and repulsion of single cells at a bipolar electrode: the impact of faradaic ion enrichment and depletion.
    Anand RK; Johnson ES; Chiu DT
    J Am Chem Soc; 2015 Jan; 137(2):776-83. PubMed ID: 25562315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields.
    Zhu J; Xuan X
    Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
    Chang ST; Beaumont E; Petsev DN; Velev OD
    Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis.
    Ramos A; González A; García-Sánchez P; Castellanos A
    J Colloid Interface Sci; 2007 May; 309(2):323-31. PubMed ID: 17346725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.
    Gao J; Chen S; AlTal F; Hu S; Bouffier L; Wantz G
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32405-32410. PubMed ID: 28849645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemically-gated delivery of analyte bands in microfluidic devices using bipolar electrodes.
    Scida K; Sheridan E; Crooks RM
    Lab Chip; 2013 Jun; 13(12):2292-9. PubMed ID: 23657767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of a microfluidic channel in the presence of an electrostatic induced cross-flow.
    Scuor N; Gallina P; Sbaizero O; Mahajan RL
    Biomed Microdevices; 2005 Sep; 7(3):231-42. PubMed ID: 16133811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Display of solid-state materials using bipolar electrochemistry.
    Ramakrishnan S; Shannon C
    Langmuir; 2010 Apr; 26(7):4602-6. PubMed ID: 20229995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
    Dhopeshwarkar R; Crooks RM; Hlushkou D; Tallarek U
    Anal Chem; 2008 Feb; 80(4):1039-48. PubMed ID: 18197694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance optimization in electric field gradient focusing.
    Sun X; Farnsworth PB; Tolley HD; Warnick KF; Woolley AT; Lee ML
    J Chromatogr A; 2009 Jan; 1216(1):159-64. PubMed ID: 19081099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.
    García-Sánchez P; Ramos A; Green NG; Morgan H
    Langmuir; 2008 Sep; 24(17):9361-9. PubMed ID: 18672919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Galvanic Bipolar Electrode Arrays with Self-Driven Optical Readouts.
    Lee H; Kim J; Hwang M; Kim J
    ACS Sens; 2023 Nov; 8(11):4374-4383. PubMed ID: 37857596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport Phenomena and Electrode Reactions Generated by an Electric Field in Colloidal Silica.
    Janca J; Checot F; Gospodinova N; Touzain S; Spírková M
    J Colloid Interface Sci; 2000 Sep; 229(2):423-430. PubMed ID: 10985821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of electroosmotic flows in electron-conducting microchannels by coupled quasi-reversible faradaic and adsorption-mediated depolarization.
    Qian S; Duval JF
    J Colloid Interface Sci; 2006 Aug; 300(1):413-28. PubMed ID: 16725151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip.
    Matsui T; Franzke J; Manz A; Janasek D
    Electrophoresis; 2007 Dec; 28(24):4606-11. PubMed ID: 18008305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.