BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19921775)

  • 41. Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip.
    Cui H; Horiuchi K; Dutta P; Ivory CF
    Anal Chem; 2005 Mar; 77(5):1303-9. PubMed ID: 15732911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Attributes of direct current aperiodic and alternating current harmonic components derived from large amplitude Fourier transformed voltammetry under microfluidic control in a channel electrode.
    Matthews SM; Shiddiky MJ; Yunus K; Elton DM; Duffy NW; Gu Y; Fisher AC; Bond AM
    Anal Chem; 2012 Aug; 84(15):6686-92. PubMed ID: 22789156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel.
    Dai J; Ito T; Sun L; Crooks RM
    J Am Chem Soc; 2003 Oct; 125(43):13026-7. PubMed ID: 14570466
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields.
    van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A
    Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scanning temperature gradient focusing.
    Hoebel SJ; Balss KM; Jones BJ; Malliaris CD; Munson MS; Vreeland WN; Ross D
    Anal Chem; 2006 Oct; 78(20):7186-90. PubMed ID: 17037919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visualizing the Zero-Potential Line of Bipolar Electrodes with Arbitrary Geometry.
    Li M; Liu S; Jiang Y; Wang W
    Anal Chem; 2018 Jun; 90(11):6390-6396. PubMed ID: 29761692
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous flow microfluidic demixing of electrolytes by induced charge electrokinetics in structured electrode arrays.
    Leinweber FC; Eijkel JC; Bomer JG; van den Berg A
    Anal Chem; 2006 Mar; 78(5):1425-34. PubMed ID: 16503590
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flow splitting at the inlet electrode as a method for decreasing the electric current in electric field assisted liquid chromatography.
    Eriksson BO; Andersson MB; Blomberg LG
    J Chromatogr A; 2006 Jun; 1119(1-2):170-5. PubMed ID: 16378620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bilinear electric field gradient focusing.
    Sun X; Li D; Woolley AT; Farnsworth PB; Tolley HD; Warnick KF; Lee ML
    J Chromatogr A; 2009 Sep; 1216(37):6532-8. PubMed ID: 19682698
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calibrated single-plunge bipolar electrode array for mapping myocardial vector fields in three dimensions during high-voltage transthoracic defibrillation.
    Deale OC; Ng KT; Kim-Van Housen EJ; Lerman BB
    IEEE Trans Biomed Eng; 2001 Aug; 48(8):898-910. PubMed ID: 11499527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of zone migration in a current rectifying nanofluidic/microfluidic analyte concentrator.
    Kelly KC; Miller SA; Timperman AT
    Anal Chem; 2009 Jan; 81(2):732-8. PubMed ID: 19072034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-dimensional bipolar electrochemistry.
    Fosdick SE; Crooks JA; Chang BY; Crooks RM
    J Am Chem Soc; 2010 Jul; 132(27):9226-7. PubMed ID: 20557049
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF
    Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of transport properties in electric field gradient focusing.
    Humble PH; Harb JN; Tolley HD; Woolley AT; Farnsworth PB; Lee ML
    J Chromatogr A; 2007 Aug; 1160(1-2):311-9. PubMed ID: 17481644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-voltage driven control in electrophoresis microchips by traveling electric field.
    Fu LM; Yang RJ
    Electrophoresis; 2003 Apr; 24(7-8):1253-60. PubMed ID: 12707919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electric field gradient focusing.
    Kelly RT; Woolley AT
    J Sep Sci; 2005 Oct; 28(15):1985-93. PubMed ID: 16276787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Digital versatile disc bipolar electrode: A fast and low-cost approach for visual sensing of analytes and electrocatalysts screening.
    Shayan M; Kiani A
    Anal Chim Acta; 2015 Aug; 888():52-8. PubMed ID: 26320958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic micropumps: microscopic convective fluid flow and pattern formation.
    Kline TR; Paxton WF; Wang Y; Velegol D; Mallouk TE; Sen A
    J Am Chem Soc; 2005 Dec; 127(49):17150-1. PubMed ID: 16332039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.