BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 19921797)

  • 1. New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate.
    Siqueira G; Bras J; Dufresne A
    Langmuir; 2010 Jan; 26(1):402-11. PubMed ID: 19921797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water.
    Aulin C; Ahola S; Josefsson P; Nishino T; Hirose Y; Osterberg M; Wågberg L
    Langmuir; 2009 Jul; 25(13):7675-85. PubMed ID: 19348478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals.
    Siqueira G; Bras J; Follain N; Belbekhouche S; Marais S; Dufresne A
    Carbohydr Polym; 2013 Jan; 91(2):711-7. PubMed ID: 23121968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals.
    Habibi Y; Dufresne A
    Biomacromolecules; 2008 Jul; 9(7):1974-80. PubMed ID: 18510360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface acylation of cellulose whiskers by drying aqueous emulsion.
    Yuan H; Nishiyama Y; Wada M; Kuga S
    Biomacromolecules; 2006 Mar; 7(3):696-700. PubMed ID: 16529402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies.
    Magalhães WL; Cao X; Lucia LA
    Langmuir; 2009 Nov; 25(22):13250-7. PubMed ID: 19731951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch nanocrystals with large chain surface modifications.
    Thielemans W; Belgacem MN; Dufresne A
    Langmuir; 2006 May; 22(10):4804-10. PubMed ID: 16649799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of silk sericin in lithium chloride/dimethyl sulfoxide solvent with 4-cyanophenyl isocyanate.
    Teramoto H; Nakajima K; Takabayashi C
    Biomacromolecules; 2004; 5(4):1392-8. PubMed ID: 15244456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image analysis of modified cellulose fibers from sugarcane bagasse by zirconium oxychloride.
    Mulinari DR; Cruz TG; Cioffi MO; Voorwald HJ; Da Silva ML; Rocha GJ
    Carbohydr Res; 2010 Sep; 345(13):1865-71. PubMed ID: 20599190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites.
    Siqueira G; Bras J; Dufresne A
    Biomacromolecules; 2009 Feb; 10(2):425-32. PubMed ID: 19113881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-phobic cellulose fibers derivatives via surface trifluoropropanoylation.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A; Orblin E; Fardim P
    Langmuir; 2007 Oct; 23(21):10801-6. PubMed ID: 17854212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane.
    Cao X; Dong H; Li CM
    Biomacromolecules; 2007 Mar; 8(3):899-904. PubMed ID: 17315923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of jute fibers for the production of green-composites.
    Corrales F; Vilaseca F; Llop M; Gironès J; Méndez JA; Mutjè P
    J Hazard Mater; 2007 Jun; 144(3):730-5. PubMed ID: 17320283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer grafting onto starch nanocrystals.
    Labet M; Thielemans W; Dufresne A
    Biomacromolecules; 2007 Sep; 8(9):2916-27. PubMed ID: 17718501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose.
    Andresen M; Stenstad P; Møretrø T; Langsrud S; Syverud K; Johansson LS; Stenius P
    Biomacromolecules; 2007 Jul; 8(7):2149-55. PubMed ID: 17542633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc.
    Ishii D; Tatsumi D; Matsumoto T
    Carbohydr Res; 2008 Apr; 343(5):919-28. PubMed ID: 18299125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of solvent exchange on the solid structure and dissolution behavior of cellulose.
    Ishii D; Tatsumi D; Matsumoto T
    Biomacromolecules; 2003; 4(5):1238-43. PubMed ID: 12959589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An FTIR investigation of isocyanate skin absorption using in vitro guinea pig skin.
    Bello D; Smith TJ; Woskie SR; Streicher RP; Boeniger MF; Redlich CA; Liu Y
    J Environ Monit; 2006 May; 8(5):523-9. PubMed ID: 16688353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.
    Oh SY; Yoo DI; Shin Y; Kim HC; Kim HY; Chung YS; Park WH; Youk JH
    Carbohydr Res; 2005 Oct; 340(15):2376-91. PubMed ID: 16153620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A; Orblin E; Fardim P
    J Colloid Interface Sci; 2007 Dec; 316(2):360-6. PubMed ID: 17889889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.