These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19921807)

  • 1. First-principle calculation-assisted structural study on the nanoscale phase transition of Si for Li-ion secondary batteries.
    Kang YM; Suh SB; Kim YS
    Inorg Chem; 2009 Dec; 48(24):11631-5. PubMed ID: 19921807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries.
    Key B; Bhattacharyya R; Morcrette M; Seznéc V; Tarascon JM; Grey CP
    J Am Chem Soc; 2009 Jul; 131(26):9239-49. PubMed ID: 19298062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries.
    Danet J; Brousse T; Rasim K; Guyomard D; Moreau P
    Phys Chem Chem Phys; 2010 Jan; 12(1):220-6. PubMed ID: 20024463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.
    Key B; Morcrette M; Tarascon JM; Grey CP
    J Am Chem Soc; 2011 Jan; 133(3):503-12. PubMed ID: 21171582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries.
    Zhong Z; Ouyang C; Shi S; Lei M
    Chemphyschem; 2008 Oct; 9(14):2104-8. PubMed ID: 18729122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in electronic structure upon Li insertion reaction of monoclinic Li3Fe2(PO4)3.
    Shirakawa J; Nakayama M; Wakihara M; Uchimoto Y
    J Phys Chem B; 2006 Sep; 110(36):17743-50. PubMed ID: 16956257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study.
    Johari P; Qi Y; Shenoy VB
    Nano Lett; 2011 Dec; 11(12):5494-500. PubMed ID: 22077884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space.
    Hertzberg B; Alexeev A; Yushin G
    J Am Chem Soc; 2010 Jun; 132(25):8548-9. PubMed ID: 20527882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy.
    Kitta M; Akita T; Maeda Y; Kohyama M
    Langmuir; 2012 Aug; 28(33):12384-92. PubMed ID: 22839691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and computational study of the electronic structural changes in LiTi2O4 spinel compounds upon electrochemical Li insertion reactions.
    Ra W; Nakayama M; Uchimoto Y; Wakihara M
    J Phys Chem B; 2005 Jan; 109(3):1130-4. PubMed ID: 16851071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Phosphorus-Doping on Electrochemical Performance of Silicon Negative Electrodes in Lithium-Ion Batteries.
    Domi Y; Usui H; Shimizu M; Kakimoto Y; Sakaguchi H
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7125-32. PubMed ID: 26938119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of bridging oxygen 17O quadrupolar coupling parameters in alkali silicates: a combined ab initio investigation.
    Clark TM; Grandinetti PJ
    Solid State Nucl Magn Reson; 2005 Jun; 27(4):233-41. PubMed ID: 15799881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal hydrides for lithium-ion batteries.
    Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L
    Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.
    Jung SC; Jung DS; Choi JW; Han YK
    J Phys Chem Lett; 2014 Apr; 5(7):1283-8. PubMed ID: 26274485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural study of the Li(0.5)Na(0.5)MnFe2(PO4)3 and Li(0.75)Na(0.25)MnFe2(PO4)3 alluaudite phases and their electrochemical properties as positive electrodes in lithium batteries.
    Trad K; Carlier D; Croguennec L; Wattiaux A; Ben Amara M; Delmas C
    Inorg Chem; 2010 Nov; 49(22):10378-89. PubMed ID: 20949928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles study of lithium insertion in bulk silicon.
    Wan W; Zhang Q; Cui Y; Wang E
    J Phys Condens Matter; 2010 Oct; 22(41):415501. PubMed ID: 21386598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.