These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19921809)

  • 1. Fluorescence competition assay measurements of free energy changes for RNA pseudoknots.
    Liu B; Shankar N; Turner DH
    Biochemistry; 2010 Jan; 49(3):623-34. PubMed ID: 19921809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting RNA pseudoknot folding thermodynamics.
    Cao S; Chen SJ
    Nucleic Acids Res; 2006; 34(9):2634-52. PubMed ID: 16709732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot.
    Nixon PL; Giedroc DP
    J Mol Biol; 2000 Feb; 296(2):659-71. PubMed ID: 10669615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of non-nearest neighbors on the thermodynamic stability of RNA GNRA hairpin tetraloops.
    Vanegas PL; Horwitz TS; Znosko BM
    Biochemistry; 2012 Mar; 51(11):2192-8. PubMed ID: 22329761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots.
    Du Z; Giedroc DP; Hoffman DW
    Biochemistry; 1996 Apr; 35(13):4187-98. PubMed ID: 8672455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae.
    Nixon PL; Cornish PV; Suram SV; Giedroc DP
    Biochemistry; 2002 Aug; 41(34):10665-74. PubMed ID: 12186552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting loop-helix tertiary structural contacts in RNA pseudoknots.
    Cao S; Giedroc DP; Chen SJ
    RNA; 2010 Mar; 16(3):538-52. PubMed ID: 20100813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loop contributions to the folding thermodynamics of DNA straight hairpin loops and pseudoknots.
    Reiling C; Khutsishvili I; Huang K; Marky LA
    J Phys Chem B; 2015 Feb; 119(5):1939-46. PubMed ID: 25584896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA pseudoknot prediction in energy-based models.
    Lyngsø RB; Pedersen CN
    J Comput Biol; 2000; 7(3-4):409-27. PubMed ID: 11108471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Complementarity of the Loop to the Stem in DNA Pseudoknots Gives Rise to Local TAT Base-Triplets.
    Reiling-Steffensmeier C; Marky LA
    Methods Enzymol; 2016; 567():413-32. PubMed ID: 26794363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
    Ruan J; Stormo GD; Zhang W
    Bioinformatics; 2004 Jan; 20(1):58-66. PubMed ID: 14693809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CA(+) pair adjacent to a sheared GA or AA pair stabilizes size-symmetric RNA internal loops.
    Chen G; Kennedy SD; Turner DH
    Biochemistry; 2009 Jun; 48(24):5738-52. PubMed ID: 19485416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An iterative method for prediction of RNA secondary structures including pseudoknots based on minimum of free energy and covariance].
    Wang ZX; Luo ZG; Guan NY; Yan FM; Jin X; Zhang W
    Yi Chuan; 2007 Jul; 29(7):889-97. PubMed ID: 17646157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic characterization of the Saccharomyces cerevisiae telomerase RNA pseudoknot domain in vitro.
    Liu F; Kim Y; Cruickshank C; Theimer CA
    RNA; 2012 May; 18(5):973-91. PubMed ID: 22450759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RnaPredict--an evolutionary algorithm for RNA secondary structure prediction.
    Wiese K; Deschenes A; Hendriks A
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(1):25-41. PubMed ID: 18245873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation.
    Lu ZJ; Turner DH; Mathews DH
    Nucleic Acids Res; 2006; 34(17):4912-24. PubMed ID: 16982646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic characterization of single mismatches found in naturally occurring RNA.
    Davis AR; Znosko BM
    Biochemistry; 2007 Nov; 46(46):13425-36. PubMed ID: 17958380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches.
    Peyret N; Seneviratne PA; Allawi HT; SantaLucia J
    Biochemistry; 1999 Mar; 38(12):3468-77. PubMed ID: 10090733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.