BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19921810)

  • 1. The betagamma-crystallin superfamily contains a universal motif for binding calcium.
    Aravind P; Mishra A; Suman SK; Jobby MK; Sankaranarayanan R; Sharma Y
    Biochemistry; 2009 Dec; 48(51):12180-90. PubMed ID: 19921810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure and calcium-binding properties of M-crystallin, a primordial betagamma-crystallin from archaea.
    Barnwal RP; Jobby MK; Devi KM; Sharma Y; Chary KV
    J Mol Biol; 2009 Feb; 386(3):675-89. PubMed ID: 19138688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caulollins from Caulobacter crescentus, a pair of partially unstructured proteins of betagamma-crystallin superfamily, gain structure upon binding calcium.
    Jobby MK; Sharma Y
    Biochemistry; 2007 Oct; 46(43):12298-307. PubMed ID: 17915944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding the molecular design principles underlying Ca(2+) binding to βγ-crystallin motifs.
    Mishra A; Suman SK; Srivastava SS; Sankaranarayanan R; Sharma Y
    J Mol Biol; 2012 Jan; 415(1):75-91. PubMed ID: 22099475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-binding motif of βγ-crystallins.
    Srivastava SS; Mishra A; Krishnan B; Sharma Y
    J Biol Chem; 2014 Apr; 289(16):10958-10966. PubMed ID: 24567326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins.
    Jobby MK; Sharma Y
    FEBS J; 2007 Aug; 274(16):4135-47. PubMed ID: 17651443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial βγ-crystallins.
    Mishra A; Krishnan B; Srivastava SS; Sharma Y
    Prog Biophys Mol Biol; 2014 Jul; 115(1):42-51. PubMed ID: 24594023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorimetric analysis of the Ca(2+)-binding betagamma-crystallin homolog protein S from Myxococcus xanthus: intrinsic stability and mutual stabilization of domains.
    Wenk M; Jaenicke R
    J Mol Biol; 1999 Oct; 293(1):117-24. PubMed ID: 10512720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urochordate betagamma-crystallin and the evolutionary origin of the vertebrate eye lens.
    Shimeld SM; Purkiss AG; Dirks RP; Bateman OA; Slingsby C; Lubsen NH
    Curr Biol; 2005 Sep; 15(18):1684-9. PubMed ID: 16169492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional domain swapping in nitrollin, a single-domain betagamma-crystallin from Nitrosospira multiformis, controls protein conformation and stability but not dimerization.
    Aravind P; Suman SK; Mishra A; Sharma Y; Sankaranarayanan R
    J Mol Biol; 2009 Jan; 385(1):163-77. PubMed ID: 18976659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative cloning, overexpression, purification and isotopic labeling of an engineered dimer of a Ca(2+)-binding protein of the βγ-crystallin superfamily from Methanosarcina acetivorans.
    Ramanujam V; Chary KV; Ainavarapu SR
    Protein Expr Purif; 2012 Jul; 84(1):116-22. PubMed ID: 22579642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. βγ-Crystallination Endows a Novel Bacterial Glycoside Hydrolase 64 with Ca
    Krishnan B; Srivastava SS; Sankeshi V; Garg R; Srivastava S; Sankaranarayanan R; Sharma Y
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31527113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disability for function: loss of Ca(2+)-binding is obligatory for fitness of mammalian βγ-crystallins.
    Suman SK; Mishra A; Yeramala L; Rastogi ID; Sharma Y
    Biochemistry; 2013 Dec; 52(50):9047-58. PubMed ID: 24251594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel interdomain interface in crystallins: structural characterization of the βγ-crystallin from Geodia cydonium at 0.99 Å resolution.
    Vergara A; Grassi M; Sica F; Pizzo E; D'Alessio G; Mazzarella L; Merlino A
    Acta Crystallogr D Biol Crystallogr; 2013 Jun; 69(Pt 6):960-7. PubMed ID: 23695240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. gammaN-crystallin and the evolution of the betagamma-crystallin superfamily in vertebrates.
    Wistow G; Wyatt K; David L; Gao C; Bateman O; Bernstein S; Tomarev S; Segovia L; Slingsby C; Vihtelic T
    FEBS J; 2005 May; 272(9):2276-91. PubMed ID: 15853812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natively unfolded βγ-crystallin domain from Hahella chejuensis.
    Srivastava AK; Sharma Y; Chary KV
    Biochemistry; 2010 Nov; 49(45):9746-55. PubMed ID: 20929244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian mu crystallin.
    Gallagher DT; Monbouquette HG; Schröder I; Robinson H; Holden MJ; Smith NN
    J Mol Biol; 2004 Sep; 342(1):119-30. PubMed ID: 15313611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational heterogeneity and dynamics in a βγ-crystallin from Hahella chejuensis.
    Srivastava AK; Chary KV
    Biophys Chem; 2011 Aug; 157(1-3):7-15. PubMed ID: 21549498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of geodin. A betagamma-crystallin-type protein from a sponge.
    Giancola C; Pizzo E; Di Maro A; Cubellis MV; D'Alessio G
    FEBS J; 2005 Feb; 272(4):1023-35. PubMed ID: 15691335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.