BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19921860)

  • 1. Contrasting synergistic anion effects in vanadium(V) binding to nicatransferrin versus human serum transferrin.
    Gaffney JP; Valentine AM
    Biochemistry; 2009 Dec; 48(49):11609-11. PubMed ID: 19921860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the evolutionary significance and metal-binding characteristics of a monolobal transferrin from Ciona intestinalis.
    Tinoco AD; Peterson CW; Lucchese B; Doyle RP; Valentine AM
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3268-73. PubMed ID: 18287008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of the iron-binding properties of a primitive monolobal transferrin from Ciona intestinalis.
    Uppal R; Lakshmi KV; Valentine AM
    J Biol Inorg Chem; 2008 Aug; 13(6):873-85. PubMed ID: 18421486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding patterns of vanadium to transferrin in healthy human serum studied with HPLC/high resolution ICP-MS.
    Nagaoka MH; Akiyama H; Maitani T
    Analyst; 2004 Jan; 129(1):51-4. PubMed ID: 14737583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): transport and biotransformation of insulin-enhancing vanadium pharmaceuticals.
    Liboiron BD; Thompson KH; Hanson GR; Lam E; Aebischer N; Orvig C
    J Am Chem Soc; 2005 Apr; 127(14):5104-15. PubMed ID: 15810845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of VO2+ ion with human serum transferrin and albumin.
    Sanna D; Garribba E; Micera G
    J Inorg Biochem; 2009 Apr; 103(4):648-55. PubMed ID: 19201482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calorimetric studies of the interaction between the insulin-enhancing drug candidate bis(maltolato)oxovanadium(IV) (BMOV) and human serum apo-transferrin.
    Bordbar AK; Creagh AL; Mohammadi F; Haynes CA; Orvig C
    J Inorg Biochem; 2009 Apr; 103(4):643-7. PubMed ID: 19056126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding patterns of vanadium ions with different valence states to human serum transferrin studied by HPLC/high-resolution ICP-MS.
    Nagaoka MH; Yamazaki T; Maitani T
    Biochem Biophys Res Commun; 2002 Sep; 296(5):1207-14. PubMed ID: 12207902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ti(IV) binds to human serum transferrin more tightly than does Fe(III).
    Tinoco AD; Valentine AM
    J Am Chem Soc; 2005 Aug; 127(32):11218-9. PubMed ID: 16089431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of V(IV) to human transferrin: potential relevance to anticancer activity of vanadocene dichloride.
    Du H; Xiang J; Zhang Y; Tang Y; Xu G
    J Inorg Biochem; 2008 Jan; 102(1):146-9. PubMed ID: 17825420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanadium-binding protein in a vanadium-rich ascidian Ascidia sydneiensissamea: CW and pulsed EPR studies.
    Fukui K; Ueki T; Ohya H; Michibata H
    J Am Chem Soc; 2003 May; 125(21):6352-3. PubMed ID: 12785759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel vanadium-binding proteins (vanabins) identified in cDNA libraries and the genome of the ascidian Ciona intestinalis.
    Trivedi S; Ueki T; Yamaguchi N; Michibata H
    Biochim Biophys Acta; 2003 Nov; 1630(2-3):64-70. PubMed ID: 14654236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential gene regulation by V(IV) and V (V) ions in the branchial sac, intestine, and blood cells of a vanadium-rich ascidian, Ciona intestinalis.
    Kume S; Ueki T; Matsuoka H; Hamada M; Satoh N; Michibata H
    Biometals; 2012 Oct; 25(5):1037-50. PubMed ID: 22811043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-binding domains and the metal selectivity of the vanadium(IV)-binding protein VBP-129 in blood plasma.
    Ueki T; Nakagawa T; Michibata H
    J Inorg Biochem; 2012 Nov; 116():70-6. PubMed ID: 23010332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural consequences of binding of UO2(2+) to apotransferrin: can this protein account for entry of uranium into human cells?
    Vidaud C; Gourion-Arsiquaud S; Rollin-Genetet F; Torne-Celer C; Plantevin S; Pible O; Berthomieu C; Quéméneur E
    Biochemistry; 2007 Feb; 46(8):2215-26. PubMed ID: 17266333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviour of vanadate and vanadium-transferrin complex on different anion-exchange columns. Application to in vivo 48V-labelled rat serum.
    De Cremer K; Cornelis R; Strijckmans K; Dams R; Lameire N; Vanholder R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Aug; 775(2):143-52. PubMed ID: 12113980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vanadium-51 NMR study of the binding of vanadate and peroxovanadate to proteins.
    Rehder D; Casný M; Grosse R
    Magn Reson Chem; 2004 Sep; 42(9):745-9. PubMed ID: 15307055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric, spectroscopic, and model studies provide insight into the transport of Ti(IV) by human serum transferrin.
    Tinoco AD; Incarvito CD; Valentine AM
    J Am Chem Soc; 2007 Mar; 129(11):3444-54. PubMed ID: 17315875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site.
    He QY; Mason AB; Tam BM; MacGillivray RT; Woodworth RC
    Biochemistry; 1999 Jul; 38(30):9704-11. PubMed ID: 10423249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mutations of aspartic acid 63 on the metal-binding properties of the recombinant N-lobe of human serum transferrin.
    He QY; Mason AB; Woodworth RC; Tam BM; Wadsworth T; MacGillivray RT
    Biochemistry; 1997 May; 36(18):5522-8. PubMed ID: 9154935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.