These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19921881)

  • 1. Exchange of TiO2 nanoparticles between streams and streambeds.
    Boncagni NT; Otaegui JM; Warner E; Curran T; Ren J; de Cortalezzi MM
    Environ Sci Technol; 2009 Oct; 43(20):7699-705. PubMed ID: 19921881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model simulations of particle aggregation effect on colloid exchange between streams and streambeds.
    Areepitak T; Ren J
    Environ Sci Technol; 2011 Jul; 45(13):5614-21. PubMed ID: 21627165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sonochemical synthesis of Au-TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment.
    Anandan S; Ashokkumar M
    Ultrason Sonochem; 2009 Mar; 16(3):316-20. PubMed ID: 19028129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of simultaneous exchange of colloids and sorbing contaminants between streams and streambeds.
    Ren J; Packman AI
    Environ Sci Technol; 2004 May; 38(10):2901-11. PubMed ID: 15212266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and properties of composites based on microgels of a responsive polymer and TiO2 nanoparticles.
    Coutinho CA; Gupta VK
    J Colloid Interface Sci; 2007 Nov; 315(1):116-22. PubMed ID: 17628582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein.
    Gheshlaghi ZN; Riazi GH; Ahmadian S; Ghafari M; Mahinpour R
    Acta Biochim Biophys Sin (Shanghai); 2008 Sep; 40(9):777-82. PubMed ID: 18776989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal aspects relating to direct incorporation of TiO2 nanoparticles into mesoporous spheres by an aerosol-assisted process.
    Vasiliev PO; Faure B; Ng JB; Bergström L
    J Colloid Interface Sci; 2008 Mar; 319(1):144-51. PubMed ID: 18067910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles.
    Zhang X; Sun H; Zhang Z; Niu Q; Chen Y; Crittenden JC
    Chemosphere; 2007 Feb; 67(1):160-6. PubMed ID: 17166554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of copper as affected by titania nanoparticles in soil columns.
    Fang J; Shan XQ; Wen B; Lin JM; Owens G; Zhou SR
    Environ Pollut; 2011 May; 159(5):1248-56. PubMed ID: 21342741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium.
    Allouni ZE; Cimpan MR; Høl PJ; Skodvin T; Gjerdet NR
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):83-7. PubMed ID: 18980834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition of Cryptosporidium oocysts in streambeds.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2006 Mar; 72(3):1810-6. PubMed ID: 16517626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model.
    Phenrat T; Song JE; Cisneros CM; Schoenfelder DP; Tilton RD; Lowry GV
    Environ Sci Technol; 2010 Jun; 44(12):4531-8. PubMed ID: 20465214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between the effects of TiO2 synthesized by photoassisted and conventional sol-gel methods on the photochromism of WO3 colloids.
    He T; Ma Y; Cao Y; Liu H; Yang W; Yao J
    J Colloid Interface Sci; 2004 Nov; 279(1):117-23. PubMed ID: 15380419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template.
    Zhao L; Yu J
    J Colloid Interface Sci; 2006 Dec; 304(1):84-91. PubMed ID: 16989852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites.
    Hu Q; Zhao P; Moran JE; Seaman JC
    J Contam Hydrol; 2005 Jul; 78(3):185-205. PubMed ID: 16019109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic degradation of methyl red by TiO2: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst.
    Mascolo G; Comparelli R; Curri ML; Lovecchio G; Lopez A; Agostiano A
    J Hazard Mater; 2007 Apr; 142(1-2):130-7. PubMed ID: 16982143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry.
    Chen CT; Chen YC
    Anal Chem; 2005 Sep; 77(18):5912-9. PubMed ID: 16159121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary electrochromatographic separation of proteins on a column coated with titanium dioxide nanoparticles.
    Hsieh YL; Chen TH; Liu CY
    Electrophoresis; 2006 Nov; 27(21):4288-94. PubMed ID: 17006881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications.
    Ju-Nam Y; Lead JR
    Sci Total Environ; 2008 Aug; 400(1-3):396-414. PubMed ID: 18715626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.