BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19921922)

  • 1. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode.
    Lee HS; Torres CI; Parameswaran P; Rittmann BE
    Environ Sci Technol; 2009 Oct; 43(20):7971-6. PubMed ID: 19921922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syntrophic interactions among anode respiring bacteria (ARB) and Non-ARB in a biofilm anode: electron balances.
    Parameswaran P; Torres CI; Lee HS; Krajmalnik-Brown R; Rittmann BE
    Biotechnol Bioeng; 2009 Jun; 103(3):513-23. PubMed ID: 19191353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.
    Zhang Y; Angelidaki I
    Water Res; 2012 May; 46(8):2727-36. PubMed ID: 22402271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.
    Geelhoed JS; Stams AJ
    Environ Sci Technol; 2011 Jan; 45(2):815-20. PubMed ID: 21158443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.
    Parameswaran P; Torres CI; Lee HS; Rittmann BE; Krajmalnik-Brown R
    Bioresour Technol; 2011 Jan; 102(1):263-71. PubMed ID: 20430615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell.
    Lu L; Ren N; Xing D; Logan BE
    Biosens Bioelectron; 2009 Jun; 24(10):3055-60. PubMed ID: 19375299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of consumption of fermentation products by anode-respiring bacteria.
    Torres CI; Marcus AK; Rittmann BE
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):689-97. PubMed ID: 17909786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production.
    Rago L; Ruiz Y; Baeza JA; Guisasola A; Cortés P
    Bioelectrochemistry; 2015 Dec; 106(Pt B):359-68. PubMed ID: 26138343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate.
    Park SG; Rhee C; Shin SG; Shin J; Mohamed HO; Choi YJ; Chae KJ
    Environ Int; 2019 Oct; 131():105006. PubMed ID: 31330362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation.
    Hou Y; Luo H; Liu G; Zhang R; Li J; Fu S
    Environ Sci Technol; 2014 Sep; 48(17):10482-8. PubMed ID: 25111871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial electrolysis cell with a microbial biocathode.
    Jeremiasse AW; Hamelers HV; Buisman CJ
    Bioelectrochemistry; 2010 Apr; 78(1):39-43. PubMed ID: 19523879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in Glucose Fermentation Pathways as a Response to the Free Ammonia Concentration in Microbial Electrolysis Cells.
    Mahmoud M; Torres CI; Rittmann BE
    Environ Sci Technol; 2017 Nov; 51(22):13461-13470. PubMed ID: 29039192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell.
    Villano M; Scardala S; Aulenta F; Majone M
    Bioresour Technol; 2013 Feb; 130():366-71. PubMed ID: 23313682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High yield hydrogen production in a single-chamber membrane-less microbial electrolysis cell.
    Ye Y; Wang L; Chen Y; Zhu S; Shen S
    Water Sci Technol; 2010; 61(3):721-7. PubMed ID: 20150709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetate enhances startup of a H₂-producing microbial biocathode.
    Jeremiasse AW; Hamelers HV; Croese E; Buisman CJ
    Biotechnol Bioeng; 2012 Mar; 109(3):657-64. PubMed ID: 22012403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.