BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19921932)

  • 1. Computational studies of ammonia channel function in glutamine 5'-phosphoribosylpyrophosphate amidotransferase.
    Wang XS; Roitberg AE; Richards NG
    Biochemistry; 2009 Dec; 48(51):12272-82. PubMed ID: 19921932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site.
    Krahn JM; Kim JH; Burns MR; Parry RJ; Zalkin H; Smith JL
    Biochemistry; 1997 Sep; 36(37):11061-8. PubMed ID: 9333323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perforation of the tunnel wall in carbamoyl phosphate synthetase derails the passage of ammonia between sequential active sites.
    Kim J; Raushel FM
    Biochemistry; 2004 May; 43(18):5334-40. PubMed ID: 15122899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia.
    Raushel FM; Thoden JB; Holden HM
    Biochemistry; 1999 Jun; 38(25):7891-9. PubMed ID: 10387030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the N-terminal domain of Escherichia coli glutamine synthetase adenylyltransferase.
    Xu Y; Zhang R; Joachimiak A; Carr PD; Huber T; Vasudevan SG; Ollis DL
    Structure; 2004 May; 12(5):861-9. PubMed ID: 15130478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli.
    Muchmore CR; Krahn JM; Kim JH; Zalkin H; Smith JL
    Protein Sci; 1998 Jan; 7(1):39-51. PubMed ID: 9514258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for the transport of ammonia within carbamoyl phosphate synthetase determined by molecular dynamics simulations.
    Fan Y; Lund L; Yang L; Raushel FM; Gao YQ
    Biochemistry; 2008 Mar; 47(9):2935-44. PubMed ID: 18220365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonia channeling in bacterial glucosamine-6-phosphate synthase (Glms): molecular dynamics simulations and kinetic studies of protein mutants.
    Floquet N; Mouilleron S; Daher R; Maigret B; Badet B; Badet-Denisot MA
    FEBS Lett; 2007 Jun; 581(16):2981-7. PubMed ID: 17559838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations on the Escherichia coli ammonia channel protein AmtB: mechanism of ammonia/ammonium transport.
    Lin Y; Cao Z; Mo Y
    J Am Chem Soc; 2006 Aug; 128(33):10876-84. PubMed ID: 16910683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convenient gHMQC-based NMR assay for investigating ammonia channeling in glutamine-dependent amidotransferases: studies of Escherichia coli asparagine synthetase B.
    Li KK; Beeson WT; Ghiviriga I; Richards NG
    Biochemistry; 2007 Apr; 46(16):4840-9. PubMed ID: 17397190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site.
    Kim JH; Krahn JM; Tomchick DR; Smith JL; Zalkin H
    J Biol Chem; 1996 Jun; 271(26):15549-57. PubMed ID: 8663035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational Changes of Glutamine 5'-Phosphoribosylpyrophosphate Amidotransferase for Two Substrates Analogue Binding: Insight from Conventional Molecular Dynamics and Accelerated Molecular Dynamics Simulations.
    Li C; Chen S; Huang T; Zhang F; Yuan J; Chang H; Li W; Han W
    Front Chem; 2021; 9():640994. PubMed ID: 33718330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamic acid gamma-monohydroxamate and hydroxylamine are alternate substrates for Escherichia coli asparagine synthetase B.
    Boehlein SK; Schuster SM; Richards NG
    Biochemistry; 1996 Mar; 35(9):3031-7. PubMed ID: 8608142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual role for the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel. Interdomain signaling and intermediate channeling.
    Bera AK; Smith JL; Zalkin H
    J Biol Chem; 2000 Mar; 275(11):7975-9. PubMed ID: 10713115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes in ammonia-channeling glutamine amidotransferases.
    Mouilleron S; Golinelli-Pimpaneau B
    Curr Opin Struct Biol; 2007 Dec; 17(6):653-64. PubMed ID: 17951049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channeling of ammonia in glucosamine-6-phosphate synthase.
    Teplyakov A; Obmolova G; Badet B; Badet-Denisot MA
    J Mol Biol; 2001 Nov; 313(5):1093-102. PubMed ID: 11700065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli.
    Wang W; Kappock TJ; Stubbe J; Ealick SE
    Biochemistry; 1998 Nov; 37(45):15647-62. PubMed ID: 9843369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure--function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme.
    Vanoni MA; Curti B
    Arch Biochem Biophys; 2005 Jan; 433(1):193-211. PubMed ID: 15581577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.