These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Two distinct mechanisms shape the reliability of neural responses. Schreiber S; Samengo I; Herz AV J Neurophysiol; 2009 May; 101(5):2239-51. PubMed ID: 19193775 [TBL] [Abstract][Full Text] [Related]
6. The neuronal transfer function: contributions from voltage- and time-dependent mechanisms. Cook EP; Wilhelm AC; Guest JA; Liang Y; Masse NY; Colbert CM Prog Brain Res; 2007; 165():1-12. PubMed ID: 17925236 [TBL] [Abstract][Full Text] [Related]
7. A computational study of the interdependencies between neuronal impulse pattern, noise effects and synchronization. Postnova S; Finke C; Jin W; Schneider H; Braun HA J Physiol Paris; 2010; 104(3-4):176-89. PubMed ID: 19948218 [TBL] [Abstract][Full Text] [Related]
9. Control of firing by small (S)-alpha-amino-3-hydroxy-5-methyl-isoxazolepropionic acid-like inputs in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. Suter KJ Neuroscience; 2004; 128(2):443-50. PubMed ID: 15350654 [TBL] [Abstract][Full Text] [Related]
10. Ergodicity of spike trains: when does trial averaging make sense? Masuda N; Aihara K Neural Comput; 2003 Jun; 15(6):1341-72. PubMed ID: 12816576 [TBL] [Abstract][Full Text] [Related]
11. Regulation of information passing by synaptic transmission: a short review. Di Maio V Brain Res; 2008 Aug; 1225():26-38. PubMed ID: 18586017 [TBL] [Abstract][Full Text] [Related]
12. Distinct properties of two major excitatory inputs to hippocampal pyramidal cells: a computational study. Káli S; Freund TF Eur J Neurosci; 2005 Oct; 22(8):2027-48. PubMed ID: 16262641 [TBL] [Abstract][Full Text] [Related]
13. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells. Suter KJ; Jaeger D Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381 [TBL] [Abstract][Full Text] [Related]
14. Controlling synaptic input patterns in vitro by dynamic photo stimulation. Boucsein C; Nawrot M; Rotter S; Aertsen A; Heck D J Neurophysiol; 2005 Oct; 94(4):2948-58. PubMed ID: 15928061 [TBL] [Abstract][Full Text] [Related]
15. Simulation of Ca2+ persistent inward currents in spinal motoneurones: mode of activation and integration of synaptic inputs. Elbasiouny SM; Bennett DJ; Mushahwar VK J Physiol; 2006 Jan; 570(Pt 2):355-74. PubMed ID: 16308349 [TBL] [Abstract][Full Text] [Related]
16. Self-tuning of neural circuits through short-term synaptic plasticity. Sussillo D; Toyoizumi T; Maass W J Neurophysiol; 2007 Jun; 97(6):4079-95. PubMed ID: 17409166 [TBL] [Abstract][Full Text] [Related]
17. Modeling the integrative properties of dendrites: application to the striatal spiny neuron. Martiel JL; Mouchet P; Boissier MD Synapse; 1994 Apr; 16(4):269-79. PubMed ID: 8059337 [TBL] [Abstract][Full Text] [Related]
18. Self-organizing dual coding based on spike-time-dependent plasticity. Masuda N; Aihara K Neural Comput; 2004 Mar; 16(3):627-63. PubMed ID: 15006094 [TBL] [Abstract][Full Text] [Related]
19. Information encoding and computation with spikes and bursts. Kepecs A; Lisman J Network; 2003 Feb; 14(1):103-18. PubMed ID: 12613553 [TBL] [Abstract][Full Text] [Related]
20. Dendritic transformations on random synaptic inputs as measured from a neuron's spike train--modeling and simulation. Kohn AF IEEE Trans Biomed Eng; 1989 Jan; 36(1):44-54. PubMed ID: 2646212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]