These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 19922663)
1. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. Xu Q; Yu K; Zhu A; Ye J; Liu Q; Zhang J; Deng X BMC Genomics; 2009 Nov; 10():540. PubMed ID: 19922663 [TBL] [Abstract][Full Text] [Related]
2. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. Xu Q; Liu Y; Zhu A; Wu X; Ye J; Yu K; Guo W; Deng X BMC Genomics; 2010 Apr; 11():246. PubMed ID: 20398412 [TBL] [Abstract][Full Text] [Related]
3. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). Liu Q; Xu J; Liu Y; Zhao X; Deng X; Guo L; Gu J J Exp Bot; 2007; 58(15-16):4161-71. PubMed ID: 18182424 [TBL] [Abstract][Full Text] [Related]
4. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Pan Z; Liu Q; Yun Z; Guan R; Zeng W; Xu Q; Deng X Proteomics; 2009 Dec; 9(24):5455-70. PubMed ID: 19834898 [TBL] [Abstract][Full Text] [Related]
5. Cytological and molecular characterization of carotenoid accumulation in normal and high-lycopene mutant oranges. Lu PJ; Wang CY; Yin TT; Zhong SL; Grierson D; Chen KS; Xu CJ Sci Rep; 2017 Apr; 7(1):761. PubMed ID: 28396598 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome analysis reveals a global insight into molecular processes regulating citrate accumulation in sweet orange (Citrus sinensis). Lu X; Cao X; Li F; Li J; Xiong J; Long G; Cao S; Xie S Physiol Plant; 2016 Dec; 158(4):463-482. PubMed ID: 27507765 [TBL] [Abstract][Full Text] [Related]
7. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Pan Z; Zeng Y; An J; Ye J; Xu Q; Deng X J Proteomics; 2012 May; 75(9):2670-84. PubMed ID: 22472342 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. Liu Q; Zhu A; Chai L; Zhou W; Yu K; Ding J; Xu J; Deng X J Exp Bot; 2009; 60(3):801-13. PubMed ID: 19218315 [TBL] [Abstract][Full Text] [Related]
9. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Alquezar B; Rodrigo MJ; Zacarías L Phytochemistry; 2008 Jul; 69(10):1997-2007. PubMed ID: 18538806 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). Yu K; Xu Q; Da X; Guo F; Ding Y; Deng X BMC Genomics; 2012 Jan; 13():10. PubMed ID: 22230690 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic analysis of differentially expressed genes in an orange-pericarp mutant and wild type in pummelo (Citrus grandis). Guo F; Yu H; Xu Q; Deng X BMC Plant Biol; 2015 Feb; 15():44. PubMed ID: 25849782 [TBL] [Abstract][Full Text] [Related]
12. A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "Pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. Rodrigo MJ; Lado J; Alós E; Alquézar B; Dery O; Hirschberg J; Zacarías L BMC Plant Biol; 2019 Nov; 19(1):465. PubMed ID: 31684878 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional Analysis of Carotenoids Accumulation and Metabolism in a Pink-Fleshed Lemon Mutant. Lana G; Zacarias-Garcia J; Distefano G; Gentile A; Rodrigo MJ; Zacarias L Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33143225 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. Zhang YJ; Wang XJ; Wu JX; Chen SY; Chen H; Chai LJ; Yi HL PLoS One; 2014; 9(12):e116056. PubMed ID: 25551568 [TBL] [Abstract][Full Text] [Related]
15. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. Wu J; Xu Z; Zhang Y; Chai L; Yi H; Deng X J Exp Bot; 2014 Apr; 65(6):1651-71. PubMed ID: 24600016 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive analysis of carotenoids metabolism in two red-fleshed mutants of Navel and Valencia sweet oranges ( Zacarías-García J; Cronje PJ; Diretto G; Zacarías L; Rodrigo MJ Front Plant Sci; 2022; 13():1034204. PubMed ID: 36330241 [TBL] [Abstract][Full Text] [Related]
17. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061 [TBL] [Abstract][Full Text] [Related]
18. Assessment of sugar and sugar accumulation-related gene expression profiles reveal new insight into the formation of low sugar accumulation trait in a sweet orange (Citrus sinensis) bud mutant. Hussain SB; Guo LX; Shi CY; Khan MA; Bai YX; Du W; Liu YZ Mol Biol Rep; 2020 Apr; 47(4):2781-2791. PubMed ID: 32212013 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512 [TBL] [Abstract][Full Text] [Related]
20. Citrus carotenoid isomerase gene characterization by complementation of the "Micro-Tom" tangerine mutant. Pinheiro TT; Peres LEP; Purgatto E; Latado RR; Maniero RA; Martins MM; Figueira A Plant Cell Rep; 2019 May; 38(5):623-636. PubMed ID: 30737538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]