BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19922773)

  • 1. Low-frequency stimulation enhances burst activity in cortical cultures during development.
    Bologna LL; Nieus T; Tedesco M; Chiappalone M; Benfenati F; Martinoia S
    Neuroscience; 2010 Feb; 165(3):692-704. PubMed ID: 19922773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development.
    Chiappalone M; Bove M; Vato A; Tedesco M; Martinoia S
    Brain Res; 2006 Jun; 1093(1):41-53. PubMed ID: 16712817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEA-based recording of neuronal activity in vitro.
    Jimbo Y
    Arch Ital Biol; 2007 Nov; 145(3-4):289-97. PubMed ID: 18075122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro.
    Corner MA; Baker RE; van Pelt J; Wolters PS
    Prog Brain Res; 2005; 147():231-48. PubMed ID: 15581710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network plasticity in cortical assemblies.
    Chiappalone M; Massobrio P; Martinoia S
    Eur J Neurosci; 2008 Jul; 28(1):221-37. PubMed ID: 18662344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays.
    Soussou WV; Yoon GJ; Brinton RD; Berger TW
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1309-20. PubMed ID: 17605362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays.
    Van Pelt J; Corner MA; Wolters PS; Rutten WL; Ramakers GJ
    Neurosci Lett; 2004 May; 361(1-3):86-9. PubMed ID: 15135900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation.
    Magill PJ; Sharott A; Bevan MD; Brown P; Bolam JP
    J Neurophysiol; 2004 Aug; 92(2):700-14. PubMed ID: 15044518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal cholinergic modulation in cultured networks of rat cortical neurons: evoked activity.
    Tateno T; Jimbo Y; Robinson HP
    Neuroscience; 2005; 134(2):439-48. PubMed ID: 15979809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
    Baruchi I; Volman V; Raichman N; Shein M; Ben-Jacob E
    Eur J Neurosci; 2008 Nov; 28(9):1825-35. PubMed ID: 18973597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.
    Heikkilä TJ; Ylä-Outinen L; Tanskanen JM; Lappalainen RS; Skottman H; Suuronen R; Mikkonen JE; Hyttinen JA; Narkilahti S
    Exp Neurol; 2009 Jul; 218(1):109-16. PubMed ID: 19393237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1297-304. PubMed ID: 9805828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin.
    Snow PJ; Andre P; Pompeiano O
    Arch Ital Biol; 1999 Feb; 137(1):1-28. PubMed ID: 9934431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated microdrop delivery system for neuronal network patterning on microelectrode arrays.
    Macis E; Tedesco M; Massobrio P; Raiteri R; Martinoia S
    J Neurosci Methods; 2007 Mar; 161(1):88-95. PubMed ID: 17141327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.