BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 19922777)

  • 1. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled antisolvent precipitation of spironolactone nanoparticles by impingement mixing.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Int J Pharm; 2011 May; 410(1-2):175-9. PubMed ID: 21397674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying.
    Hu J; Ng WK; Dong Y; Shen S; Tan RB
    Int J Pharm; 2011 Feb; 404(1-2):198-204. PubMed ID: 21056643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives.
    Cho E; Cho W; Cha KH; Park J; Kim MS; Kim JS; Park HJ; Hwang SJ
    Int J Pharm; 2010 Aug; 396(1-2):91-8. PubMed ID: 20558265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Int J Pharm; 2009 Jun; 375(1-2):84-8. PubMed ID: 19481693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique.
    Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X
    Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation.
    Dalvi SV; Dave RN
    Int J Pharm; 2010 Mar; 387(1-2):172-9. PubMed ID: 20026199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization.
    Matteucci ME; Hotze MA; Johnston KP; Williams RO
    Langmuir; 2006 Oct; 22(21):8951-9. PubMed ID: 17014140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.
    Yadav D; Kumar N
    Int J Pharm; 2014 Dec; 477(1-2):564-77. PubMed ID: 25445971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of bicalutamide nanodispersion for dissolution rate enhancement.
    Li C; Li C; Le Y; Chen JF
    Int J Pharm; 2011 Feb; 404(1-2):257-63. PubMed ID: 21093558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.
    Kim MS; Jin SJ; Kim JS; Park HJ; Song HS; Neubert RH; Hwang SJ
    Eur J Pharm Biopharm; 2008 Jun; 69(2):454-65. PubMed ID: 18359211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent.
    Muhrer G; Mazzotti M
    Biotechnol Prog; 2003; 19(2):549-56. PubMed ID: 12675600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement.
    Sanganwar GP; Sathigari S; Babu RJ; Gupta RB
    Eur J Pharm Sci; 2010 Jan; 39(1-3):164-74. PubMed ID: 19961931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth.
    Lindfors L; Skantze P; Skantze U; Westergren J; Olsson U
    Langmuir; 2007 Sep; 23(19):9866-74. PubMed ID: 17696457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano- and micro-particulate formulations of poorly water-soluble drugs by using a novel optimized technique.
    Douroumis D; Fahr A
    Eur J Pharm Biopharm; 2006 Jun; 63(2):173-5. PubMed ID: 16621482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix.
    Karavas E; Georgarakis M; Docoslis A; Bikiaris D
    Int J Pharm; 2007 Aug; 340(1-2):76-83. PubMed ID: 17478064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation.
    Zhao X; Wang W; Zu Y; Zhang Y; Li Y; Sun W; Shan C; Ge Y
    Drug Deliv; 2014 Sep; 21(6):467-79. PubMed ID: 24479653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of surface-adsorbed excipients of various types on drug particles prepared by antisolvent precipitation using HPLC with evaporative light scattering detection.
    Zimmermann A; Elema MR; Hansen T; Müllertz A; Hovgaard L
    J Pharm Biomed Anal; 2007 Aug; 44(4):874-80. PubMed ID: 17531425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation.
    Zu Y; Sun W; Zhao X; Wang W; Li Y; Ge Y; Liu Y; Wang K
    Eur J Pharm Sci; 2014 Mar; 53():109-17. PubMed ID: 24345795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.