BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19922783)

  • 1. Development of sulforaphane-encapsulated microspheres for cancer epigenetic therapy.
    Do DP; Pai SB; Rizvi SA; D'Souza MJ
    Int J Pharm; 2010 Feb; 386(1-2):114-21. PubMed ID: 19922783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation and evaluation of drug-loaded targeted magnetic microspheres for cancer therapy.
    Enriquez GG; Rizvi SA; D'Souza MJ; Do DP
    Int J Nanomedicine; 2013; 8():1393-402. PubMed ID: 23630421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustained delivery of IL-1 Ra from biodegradable microspheres reduces the number of murine B16 melanoma lung metastases.
    Lavi G; Voronov E; Dinarello CA; Apte RN; Cohen S
    J Control Release; 2007 Nov; 123(2):123-30. PubMed ID: 17900737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-cancer effects of docetaxel loaded thermo-reversible hydrogels in a tumor xenograft mice model.
    Kim JK; Won YW; Lim KS; Park EJ; Kim YH
    J Control Release; 2011 Nov; 152 Suppl 1():e44-5. PubMed ID: 22195916
    [No Abstract]   [Full Text] [Related]  

  • 5. Lysosome activable polymeric vorinostat encapsulating PD-L1KD for a combination of HDACi and immunotherapy.
    Lu F; Hou L; Wang S; Yu Y; Zhang Y; Sun L; Wang C; Ma Z; Yang F
    Drug Deliv; 2021 Dec; 28(1):963-972. PubMed ID: 34036867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic delivery of nanoparticle formulation of novel tubulin inhibitor for treating metastatic melanoma.
    Mundra V; Peng Y; Kumar V; Li W; Miller DD; Mahato RI
    Drug Deliv Transl Res; 2015 Jun; 5(3):199-208. PubMed ID: 25924699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimetastatic activity of Sulforaphane.
    Thejass P; Kuttan G
    Life Sci; 2006 May; 78(26):3043-50. PubMed ID: 16600309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic polycarbonate microspheres for tumor-targeted delivery of tumor necrosis factor.
    Hu B; Du HJ; Yan GP; Zhuo RX; Wu Y; Fan CL
    Drug Deliv; 2014 May; 21(3):204-12. PubMed ID: 24117028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of HDAC inhibitor MS-275 and IL-2 increased anti-tumor effect in a melanoma model via activated cytotoxic T cells.
    Kato Y; Yoshino I; Egusa C; Maeda T; Pili R; Tsuboi R
    J Dermatol Sci; 2014 Aug; 75(2):140-7. PubMed ID: 24866536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells.
    Yang F; Wang F; Liu Y; Wang S; Li X; Huang Y; Xia Y; Cao C
    Life Sci; 2018 Nov; 213():149-157. PubMed ID: 30352240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates.
    Dashwood RH; Ho E
    Nutr Rev; 2008 Aug; 66 Suppl 1(Suppl 1):S36-8. PubMed ID: 18673487
    [No Abstract]   [Full Text] [Related]  

  • 12. Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity.
    Yu M; Zhang C; Tang Z; Tang X; Xu H
    Cancer Lett; 2019 Feb; 442():396-408. PubMed ID: 30439541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC5-LSD1 axis regulates antineoplastic effect of natural HDAC inhibitor sulforaphane in human breast cancer cells.
    Cao C; Wu H; Vasilatos SN; Chandran U; Qin Y; Wan Y; Oesterreich S; Davidson NE; Huang Y
    Int J Cancer; 2018 Sep; 143(6):1388-1401. PubMed ID: 29633255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micellar nano-carriers for the delivery of STAT3 dimerization inhibitors to melanoma.
    Soleimani AH; Garg SM; Paiva IM; Vakili MR; Alshareef A; Huang YH; Molavi O; Lai R; Lavasanifar A
    Drug Deliv Transl Res; 2017 Aug; 7(4):571-581. PubMed ID: 28290050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The antitumour activities induced by pegylated liposomal cytochalasin D in murine models.
    Huang FY; Mei WL; Li YN; Tan GH; Dai HF; Guo JL; Wang H; Huang YH; Zhao HG; Zhou SL; Li L; Lin YY
    Eur J Cancer; 2012 Sep; 48(14):2260-9. PubMed ID: 22257793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(beta-amino ester) block copolymer micelles for cancer therapy.
    Ko J; Park K; Kim YS; Kim MS; Han JK; Kim K; Park RW; Kim IS; Song HK; Lee DS; Kwon IC
    J Control Release; 2007 Nov; 123(2):109-15. PubMed ID: 17894942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma.
    Mandala Rayabandla SK; Aithal K; Anandam A; Shavi G; Nayanabhirama U; Arumugam K; Musmade P; Bhat K; Bola Sadashiva SR
    Drug Deliv; 2010 Apr; 17(3):103-13. PubMed ID: 20100068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and evaluation of tributyrin emulsion as a potent anti-cancer agent against melanoma.
    Kang SN; Lee E; Lee MK; Lim SJ
    Drug Deliv; 2011 Feb; 18(2):143-9. PubMed ID: 20946006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of cell-mediated immune response in B16F-10 melanoma-induced metastatic tumor-bearing C57BL/6 mice by sulforaphane.
    Thejass P; Kuttan G
    Immunopharmacol Immunotoxicol; 2007; 29(2):173-86. PubMed ID: 17849266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.