These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 19922997)
41. Upconversion nanoparticle-based FRET system for study of siRNA in live cells. Jiang S; Zhang Y Langmuir; 2010 May; 26(9):6689-94. PubMed ID: 20073488 [TBL] [Abstract][Full Text] [Related]
42. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Spagnou S; Miller AD; Keller M Biochemistry; 2004 Oct; 43(42):13348-56. PubMed ID: 15491141 [TBL] [Abstract][Full Text] [Related]
43. A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo. Yagi N; Manabe I; Tottori T; Ishihara A; Ogata F; Kim JH; Nishimura S; Fujiu K; Oishi Y; Itaka K; Kato Y; Yamauchi M; Nagai R Cancer Res; 2009 Aug; 69(16):6531-8. PubMed ID: 19654315 [TBL] [Abstract][Full Text] [Related]
44. The in vitro and in vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery for podophyllotoxin. Qin L; Xue M; Wang W; Zhu R; Wang S; Sun J; Zhang R; Sun X Int J Pharm; 2010 Mar; 388(1-2):223-30. PubMed ID: 20045452 [TBL] [Abstract][Full Text] [Related]
45. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery. Crombez L; Morris MC; Heitz F; Divita G Methods Mol Biol; 2011; 764():59-73. PubMed ID: 21748633 [TBL] [Abstract][Full Text] [Related]
46. Poly-L-lysine-coated albumin nanoparticles: stability, mechanism for increasing in vitro enzymatic resilience, and siRNA release characteristics. Singh HD; Wang G; Uludağ H; Unsworth LD Acta Biomater; 2010 Nov; 6(11):4277-84. PubMed ID: 20601248 [TBL] [Abstract][Full Text] [Related]
47. Silencing of the metastasis-linked gene, AEG-1, using siRNA-loaded cholamine surface-modified gelatin nanoparticles in the breast carcinoma cell line MCF-7. Abozeid SM; Hathout RM; Abou-Aisha K Colloids Surf B Biointerfaces; 2016 Sep; 145():607-616. PubMed ID: 27285732 [TBL] [Abstract][Full Text] [Related]
48. Particle-particle interactions between layered double hydroxide nanoparticles. Gursky JA; Blough SD; Luna C; Gomez C; Luevano AN; Gardner EA J Am Chem Soc; 2006 Jul; 128(26):8376-7. PubMed ID: 16802784 [TBL] [Abstract][Full Text] [Related]
49. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Carmona S; Jorgensen MR; Kolli S; Crowther C; Salazar FH; Marion PL; Fujino M; Natori Y; Thanou M; Arbuthnot P; Miller AD Mol Pharm; 2009; 6(3):706-17. PubMed ID: 19159285 [TBL] [Abstract][Full Text] [Related]
50. Smart polymeric micelles as nanocarriers for oligonucleotides and siRNA delivery. Kataoka K; Itaka K; Nishiyama N; Yamasaki Y; Oishi M; Nagasaki Y Nucleic Acids Symp Ser (Oxf); 2005; (49):17-8. PubMed ID: 17150611 [TBL] [Abstract][Full Text] [Related]
51. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Pirollo KF; Rait A; Zhou Q; Hwang SH; Dagata JA; Zon G; Hogrefe RI; Palchik G; Chang EH Cancer Res; 2007 Apr; 67(7):2938-43. PubMed ID: 17409398 [TBL] [Abstract][Full Text] [Related]
52. MnAl Layered Double Hydroxide Nanoparticles as a Dual-Functional Platform for Magnetic Resonance Imaging and siRNA Delivery. Zuo H; Chen W; Li B; Xu K; Cooper H; Gu Z; Xu ZP Chemistry; 2017 Oct; 23(57):14299-14306. PubMed ID: 28762580 [TBL] [Abstract][Full Text] [Related]
53. Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Xiong XB; Uludağ H; Lavasanifar A Biomaterials; 2009 Jan; 30(2):242-53. PubMed ID: 18838158 [TBL] [Abstract][Full Text] [Related]
54. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs. de Jonge J; Holtrop M; Wilschut J; Huckriede A Gene Ther; 2006 Mar; 13(5):400-11. PubMed ID: 16267567 [TBL] [Abstract][Full Text] [Related]
55. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Liu X; Howard KA; Dong M; Andersen MØ; Rahbek UL; Johnsen MG; Hansen OC; Besenbacher F; Kjems J Biomaterials; 2007 Feb; 28(6):1280-8. PubMed ID: 17126901 [TBL] [Abstract][Full Text] [Related]
56. RNA interference by nanofiber-based siRNA delivery system. Cao H; Jiang X; Chai C; Chew SY J Control Release; 2010 Jun; 144(2):203-12. PubMed ID: 20138939 [TBL] [Abstract][Full Text] [Related]
57. Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Wang Y; Zhou L; Fang L; Cao F Acta Biomater; 2020 Mar; 104():104-114. PubMed ID: 31931169 [TBL] [Abstract][Full Text] [Related]
58. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. Xu ZP; Stevenson G; Lu CQ; Lu GQ J Phys Chem B; 2006 Aug; 110(34):16923-9. PubMed ID: 16927982 [TBL] [Abstract][Full Text] [Related]
59. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAi-mediated gene silencing in mammalian cells. Wu RH; Cheng TL; Lo SR; Hsu HC; Hung CF; Teng CF; Wu MP; Tsai WH; Chang WT J Gene Med; 2007 Jul; 9(7):620-34. PubMed ID: 17486668 [TBL] [Abstract][Full Text] [Related]
60. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo. Griesenbach U; Kitson C; Escudero Garcia S; Farley R; Singh C; Somerton L; Painter H; Smith RL; Gill DR; Hyde SC; Chow YH; Hu J; Gray M; Edbrooke M; Ogilvie V; MacGregor G; Scheule RK; Cheng SH; Caplen NJ; Alton EW Respir Res; 2006 Feb; 7(1):26. PubMed ID: 16480492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]