These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 19923231)
1. GeMMA: functional subfamily classification within superfamilies of predicted protein structural domains. Lee DA; Rentzsch R; Orengo C Nucleic Acids Res; 2010 Jan; 38(3):720-37. PubMed ID: 19923231 [TBL] [Abstract][Full Text] [Related]
2. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation. Das S; Lee D; Sillitoe I; Dawson NL; Lees JG; Orengo CA Bioinformatics; 2015 Nov; 31(21):3460-7. PubMed ID: 26139634 [TBL] [Abstract][Full Text] [Related]
3. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes. Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317 [TBL] [Abstract][Full Text] [Related]
4. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures. Pascual-García A; Abia D; Ortiz AR; Bastolla U PLoS Comput Biol; 2009 Mar; 5(3):e1000331. PubMed ID: 19325884 [TBL] [Abstract][Full Text] [Related]
5. On the quality of tree-based protein classification. Lazareva-Ulitsky B; Diemer K; Thomas PD Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305 [TBL] [Abstract][Full Text] [Related]
6. Identification of subfamily-specific sites based on active sites modeling and clustering. de Melo-Minardi RC; Bastard K; Artiguenave F Bioinformatics; 2010 Dec; 26(24):3075-82. PubMed ID: 20980272 [TBL] [Abstract][Full Text] [Related]
7. An approach to functionally relevant clustering of the protein universe: Active site profile-based clustering of protein structures and sequences. Knutson ST; Westwood BM; Leuthaeuser JB; Turner BE; Nguyendac D; Shea G; Kumar K; Hayden JD; Harper AF; Brown SD; Morris JH; Ferrin TE; Babbitt PC; Fetrow JS Protein Sci; 2017 Apr; 26(4):677-699. PubMed ID: 28054422 [TBL] [Abstract][Full Text] [Related]
8. SUPFAM: a database of sequence superfamilies of protein domains. Pandit SB; Bhadra R; Gowri VS; Balaji S; Anand B; Srinivasan N BMC Bioinformatics; 2004 Mar; 5():28. PubMed ID: 15113407 [TBL] [Abstract][Full Text] [Related]
9. GFam: a platform for automatic annotation of gene families. Sasidharan R; Nepusz T; Swarbreck D; Huala E; Paccanaro A Nucleic Acids Res; 2012 Oct; 40(19):e152. PubMed ID: 22790981 [TBL] [Abstract][Full Text] [Related]
10. Automatic classification of protein structures using physicochemical parameters. Mohan A; Rao MD; Sunderrajan S; Pennathur G Interdiscip Sci; 2014 Sep; 6(3):176-86. PubMed ID: 25205495 [TBL] [Abstract][Full Text] [Related]
11. Exploring dynamics of protein structure determination and homology-based prediction to estimate the number of superfamilies and folds. Sadreyev RI; Grishin NV BMC Struct Biol; 2006 Mar; 6():6. PubMed ID: 16549009 [TBL] [Abstract][Full Text] [Related]
12. Gene3D: Multi-domain annotations for protein sequence and comparative genome analysis. Lees JG; Lee D; Studer RA; Dawson NL; Sillitoe I; Das S; Yeats C; Dessailly BH; Rentzsch R; Orengo CA Nucleic Acids Res; 2014 Jan; 42(Database issue):D240-5. PubMed ID: 24270792 [TBL] [Abstract][Full Text] [Related]
13. ProtoMap: automatic classification of protein sequences, a hierarchy of protein families, and local maps of the protein space. Yona G; Linial N; Linial M Proteins; 1999 Nov; 37(3):360-78. PubMed ID: 10591097 [TBL] [Abstract][Full Text] [Related]
14. A rapid classification protocol for the CATH Domain Database to support structural genomics. Pearl FM; Martin N; Bray JE; Buchan DW; Harrison AP; Lee D; Reeves GA; Shepherd AJ; Sillitoe I; Todd AE; Thornton JM; Orengo CA Nucleic Acids Res; 2001 Jan; 29(1):223-7. PubMed ID: 11125098 [TBL] [Abstract][Full Text] [Related]
15. PASS2: an automated database of protein alignments organised as structural superfamilies. Bhaduri A; Pugalenthi G; Sowdhamini R BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245 [TBL] [Abstract][Full Text] [Related]
16. FlowerPower: clustering proteins into domain architecture classes for phylogenomic inference of protein function. Krishnamurthy N; Brown D; Sjölander K BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S12. PubMed ID: 17288570 [TBL] [Abstract][Full Text] [Related]
17. Evolution of function in protein superfamilies, from a structural perspective. Todd AE; Orengo CA; Thornton JM J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560 [TBL] [Abstract][Full Text] [Related]
18. FunShift: a database of function shift analysis on protein subfamilies. Abhiman S; Sonnhammer EL Nucleic Acids Res; 2005 Jan; 33(Database issue):D197-200. PubMed ID: 15608176 [TBL] [Abstract][Full Text] [Related]
19. The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Pearl F; Todd A; Sillitoe I; Dibley M; Redfern O; Lewis T; Bennett C; Marsden R; Grant A; Lee D; Akpor A; Maibaum M; Harrison A; Dallman T; Reeves G; Diboun I; Addou S; Lise S; Johnston C; Sillero A; Thornton J; Orengo C Nucleic Acids Res; 2005 Jan; 33(Database issue):D247-51. PubMed ID: 15608188 [TBL] [Abstract][Full Text] [Related]
20. Entropy-driven partitioning of the hierarchical protein space. Rappoport N; Stern A; Linial N; Linial M Bioinformatics; 2014 Sep; 30(17):i624-30. PubMed ID: 25161256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]