BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 19923426)

  • 1. Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation.
    Nakamura Y; Koizumi R; Shui G; Shimojima M; Wenk MR; Ito T; Ohta H
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20978-83. PubMed ID: 19923426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different effects of phospholipase Dζ2 and non-specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency.
    Su Y; Li M; Guo L; Wang X
    Plant J; 2018 Apr; 94(2):315-326. PubMed ID: 29437261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis.
    Gaude N; Nakamura Y; Scheible WR; Ohta H; Dörmann P
    Plant J; 2008 Oct; 56(1):28-39. PubMed ID: 18564386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced root growth in phosphate-starved Arabidopsis by stimulating de novo phospholipid biosynthesis through the overexpression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2).
    Angkawijaya AE; Nguyen VC; Nakamura Y
    Plant Cell Environ; 2017 Sep; 40(9):1807-1818. PubMed ID: 28548242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid remodeling under acidic conditions and its interplay with low Pi stress in Arabidopsis.
    Murakawa M; Ohta H; Shimojima M
    Plant Mol Biol; 2019 Sep; 101(1-2):81-93. PubMed ID: 31201686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phosphatidate phosphatase double mutant provides a new insight into plant membrane lipid homeostasis.
    Eastmond PJ; Quettier AL; Kroon JT; Craddock C; Adams N; Slabas AR
    Plant Signal Behav; 2011 Apr; 6(4):526-7. PubMed ID: 21406976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation.
    Kobayashi K; Awai K; Nakamura M; Nagatani A; Masuda T; Ohta H
    Plant J; 2009 Jan; 57(2):322-31. PubMed ID: 18808455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroplast phosphatases LPPγ and LPPε1 facilitate conversion of extraplastidic phospholipids to galactolipids.
    Cook R; Froehlich JE; Yang Y; Korkmaz I; Kramer DM; Benning C
    Plant Physiol; 2024 May; 195(2):1506-1520. PubMed ID: 38401529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis.
    Nakamura Y; Awai K; Masuda T; Yoshioka Y; Takamiya K; Ohta H
    J Biol Chem; 2005 Mar; 280(9):7469-76. PubMed ID: 15618226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency.
    Yang B; Li M; Phillips A; Li L; Ali U; Li Q; Lu S; Hong Y; Wang X; Guo L
    Plant Cell; 2021 May; 33(3):766-780. PubMed ID: 33955494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots.
    Cruz-Ramírez A; Oropeza-Aburto A; Razo-Hernández F; Ramírez-Chávez E; Herrera-Estrella L
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6765-70. PubMed ID: 16617110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D zeta1 and D zeta2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants.
    Li M; Welti R; Wang X
    Plant Physiol; 2006 Oct; 142(2):750-61. PubMed ID: 16891548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk.
    Kobayashi K; Masuda T; Takamiya K; Ohta H
    Plant J; 2006 Jul; 47(2):238-48. PubMed ID: 16762032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis PECP1 and PS2 are phosphate starvation-inducible phosphocholine phosphatases.
    Angkawijaya AE; Nakamura Y
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):397-401. PubMed ID: 28942147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis.
    Eastmond PJ; Quettier AL; Kroon JT; Craddock C; Adams N; Slabas AR
    Plant Cell; 2010 Aug; 22(8):2796-811. PubMed ID: 20699392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinctly localized lipid phosphate phosphatases mediate endoplasmic reticulum glycerolipid metabolism in Arabidopsis.
    Nguyen VC; Nakamura Y
    Plant Cell; 2023 Apr; 35(5):1548-1571. PubMed ID: 36718530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation.
    Narise T; Kobayashi K; Baba S; Shimojima M; Masuda S; Fukaki H; Ohta H
    Plant Mol Biol; 2010 Mar; 72(4-5):533-44. PubMed ID: 20043234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis.
    Lei M; Zhu C; Liu Y; Karthikeyan AS; Bressan RA; Raghothama KG; Liu D
    New Phytol; 2011 Mar; 189(4):1084-1095. PubMed ID: 21118263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHOSPHATIDIC ACID PHOSPHOHYDROLASE Regulates Phosphatidylcholine Biosynthesis in Arabidopsis by Phosphatidic Acid-Mediated Activation of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE Activity.
    Craddock CP; Adams N; Bryant FM; Kurup S; Eastmond PJ
    Plant Cell; 2015 Apr; 27(4):1251-64. PubMed ID: 25862304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatidic acid phosphohydrolase modulates glycerolipid synthesis in Marchantia polymorpha and is crucial for growth under both nutrient-replete and -deficient conditions.
    Shimojo M; Nakamura M; Kitaura G; Ihara Y; Shimizu S; Hori K; Iwai M; Ohta H; Ishizaki K; Shimojima M
    Planta; 2023 Oct; 258(5):92. PubMed ID: 37792042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.