BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 19923655)

  • 21. Scanning tunneling microscopy simulations of nitrogen- and boron-doped graphene and single-walled carbon nanotubes.
    Zheng B; Hermet P; Henrard L
    ACS Nano; 2010 Jul; 4(7):4165-73. PubMed ID: 20552993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon-doped carbon nanotubes: a potential resource for the detection of chlorophenols/chlorophenoxy radicals.
    Jiang H; Zhang D; Wang R
    Nanotechnology; 2009 Apr; 20(14):145501. PubMed ID: 19420527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can metal-free silicon-doped hexagonal boron nitride nanosheets and nanotubes exhibit activity toward CO oxidation?
    Lin S; Ye X; Huang J
    Phys Chem Chem Phys; 2015 Jan; 17(2):888-95. PubMed ID: 25407885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding effects of molecular adsorption at a single-wall boron nitride nanotube interface from density functional theory calculations.
    Akdim B; Kim SN; Naik RR; Maruyama B; Pender MJ; Pachter R
    Nanotechnology; 2009 Sep; 20(35):355705. PubMed ID: 19671986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective adsorption and dissociation of NO, NO
    Hassanpour A; Kamel M; Ebrahimiasl S; Ebadi AG; Arshadi S; Ghulinezhad Ahangari Z
    J Mol Model; 2021 Dec; 28(1):6. PubMed ID: 34889992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural and electronic properties of amine-functionalized boron nitride nanotubes via ammonia plasmas: a density functional theory study.
    Cao F; Ren W; Ji YM; Zhao C
    Nanotechnology; 2009 Apr; 20(14):145703. PubMed ID: 19420533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes?
    Chen Y; Wang HX; Zhao JX; Cai QH; Wang XG; Wang XZ
    J Mol Model; 2012 Jul; 18(7):3415-25. PubMed ID: 22271098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
    Qiao L; Zheng WT; Xu H; Zhang L; Jiang Q
    J Chem Phys; 2007 Apr; 126(16):164702. PubMed ID: 17477619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach.
    Nasrabadi AT; Foroutan M
    J Phys Chem B; 2010 Dec; 114(47):15429-36. PubMed ID: 21062092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defect-induced chemisorption of nitrogen oxides on (10,0) single-walled carbon nanotubes: Insights from density functional calculations.
    Tang S; Cao Z
    J Chem Phys; 2009 Sep; 131(11):114706. PubMed ID: 19778141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping.
    Cabria I; López MJ; Alonso JA
    J Chem Phys; 2005 Nov; 123(20):204721. PubMed ID: 16351307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic properties and reactivity of Pt-doped carbon nanotubes.
    Tian WQ; Liu LV; Wang YA
    Phys Chem Chem Phys; 2006 Aug; 8(30):3528-39. PubMed ID: 16871342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    Phys Chem Chem Phys; 2014 Nov; 16(41):22853-60. PubMed ID: 25242148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water phase transition induced by a Stone-Wales defect in a boron nitride nanotube.
    Won CY; Aluru NR
    J Am Chem Soc; 2008 Oct; 130(41):13649-52. PubMed ID: 18803384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical study of boron nitride nanotubes with defects in nitrogen-rich synthesis.
    Kang HS
    J Phys Chem B; 2006 Mar; 110(10):4621-8. PubMed ID: 16526693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen adsorption characteristics on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    J Comput Chem; 2014 May; 35(14):1058-63. PubMed ID: 24659221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature.
    Rimola A; Sodupe M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13190-8. PubMed ID: 23824299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screened exchange hybrid density-functional study of the work function of pristine and doped single-walled carbon nanotubes.
    Barone V; Peralta JE; Uddin J; Scuseria GE
    J Chem Phys; 2006 Jan; 124(2):024709. PubMed ID: 16422628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boron nitride nanotubes functionalized by a series of carbenes.
    Cao F; Ren W; Xu X; Ji YM; Zhao C
    Phys Chem Chem Phys; 2009 Aug; 11(29):6256-62. PubMed ID: 19606337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.
    Vikramaditya T; Sumithra K
    J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.