These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 19923656)
1. 'All-inclusive' imaging of the rutile TiO(2)(110) surface using NC-AFM. Bechstein R; González C; Schütte J; Jelínek P; Pérez R; Kühnle A Nanotechnology; 2009 Dec; 20(50):505703. PubMed ID: 19923656 [TBL] [Abstract][Full Text] [Related]
2. NC-AFM imaging of the TiO(2)(110)-(1 x 1) surface at low temperature. Yurtsever A; Sugimoto Y; Abe M; Morita S Nanotechnology; 2010 Apr; 21(16):165702. PubMed ID: 20348596 [TBL] [Abstract][Full Text] [Related]
3. Combined NC-AFM and DFT study of the adsorption geometry of trimesic acid on rutile TiO2(110). Greuling A; Rahe P; Kaczmarski M; Kühnle A; Rohlfing M J Phys Condens Matter; 2010 Sep; 22(34):345008. PubMed ID: 21403252 [TBL] [Abstract][Full Text] [Related]
4. Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Lauritsen JV; Foster AS; Olesen GH; Christensen MC; Kühnle A; Helveg S; Rostrup-Nielsen JR; Clausen BS; Reichling M; Besenbacher F Nanotechnology; 2006 Jul; 17(14):3436-41. PubMed ID: 19661587 [TBL] [Abstract][Full Text] [Related]
5. Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. Lauritsen JV; Reichling M J Phys Condens Matter; 2010 Jul; 22(26):263001. PubMed ID: 21386455 [TBL] [Abstract][Full Text] [Related]
6. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101). Cheng H; Selloni A J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581 [TBL] [Abstract][Full Text] [Related]
8. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
9. Understanding atomic-resolved STM images on TiO2(110)-(1 x 1) surface by DFT calculations. Sánchez-Sánchez C; González C; Jelinek P; Méndez J; de Andres PL; Martín-Gago JA; López MF Nanotechnology; 2010 Oct; 21(40):405702. PubMed ID: 20823501 [TBL] [Abstract][Full Text] [Related]
10. Contrast inversion in non-contact atomic force microscopy imaging of C60 molecules. Loske F; Rahe P; Kühnle A Nanotechnology; 2009 Jul; 20(26):264010. PubMed ID: 19509449 [TBL] [Abstract][Full Text] [Related]
11. High-resolution noncontact atomic force microscopy. Pérez R; García R; Schwarz U Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843 [TBL] [Abstract][Full Text] [Related]
12. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110). Haubrich J; Kaxiras E; Friend CM Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119 [TBL] [Abstract][Full Text] [Related]
13. 'Sub-atomic' resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Campbellová A; Ondráček M; Pou P; Pérez R; Klapetek P; Jelínek P Nanotechnology; 2011 Jul; 22(29):295710. PubMed ID: 21685559 [TBL] [Abstract][Full Text] [Related]
14. The influence of a Si cantilever tip with/without tungsten coating on noncontact atomic force microscopy imaging of a Ge(001) surface. Naitoh Y; Kinoshita Y; Jun Li Y; Kageshima M; Sugawara Y Nanotechnology; 2009 Jul; 20(26):264011. PubMed ID: 19509444 [TBL] [Abstract][Full Text] [Related]
15. Ab initio simulation of atomic-scale imaging in noncontact atomic force microscopy. Caciuc V; Hölscher H Nanotechnology; 2009 Jul; 20(26):264006. PubMed ID: 19509458 [TBL] [Abstract][Full Text] [Related]
16. NC-AFM observation of atomic scale structure of rutile-type TiO2(110) surface prepared by wet chemical process. Namai Y; Matsuoka O J Phys Chem B; 2006 Apr; 110(13):6451-3. PubMed ID: 16570940 [TBL] [Abstract][Full Text] [Related]
17. The effects of antimony doping on the surface structure of rutile TiO2(110). Bechstein R; Kitta M; Schütte J; Onishi H; Kühnle A Nanotechnology; 2009 Jul; 20(26):264003. PubMed ID: 19509451 [TBL] [Abstract][Full Text] [Related]
18. Surface structures of rutile TiO2 (011). Kubo T; Orita H; Nozoye H J Am Chem Soc; 2007 Aug; 129(34):10474-8. PubMed ID: 17685518 [TBL] [Abstract][Full Text] [Related]
19. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface. Chrétien S; Metiu H J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696 [TBL] [Abstract][Full Text] [Related]
20. The role of tip size and orientation, tip-surface relaxations and surface impurities in simultaneous AFM and STM studies on the TiO2(110) surface. Pinto HP; Enevoldsen GH; Besenbacher F; Lauritsen JV; Foster AS Nanotechnology; 2009 Jul; 20(26):264020. PubMed ID: 19509443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]