These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19923658)

  • 1. The effect of temperature and freeze-thaw processes on gold nanorods.
    Albert GC; Roumeliotis M; Carson JJ
    Nanotechnology; 2009 Dec; 20(50):505502. PubMed ID: 19923658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of intensity and energy of CW UV light on the growth of gold nanorods.
    Miranda OR; Ahmadi TS
    J Phys Chem B; 2005 Aug; 109(33):15724-34. PubMed ID: 16852995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanorods dispersed in homopolymer films: optical properties controlled by self-assembly and percolation of nanorods.
    Jiang G; Hore MJ; Gam S; Composto RJ
    ACS Nano; 2012 Feb; 6(2):1578-88. PubMed ID: 22283716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ WetSTEM observation of gold nanorod self-assembly dynamics in a drying colloidal droplet.
    Novotný F; Wandrol P; Proška J; Slouf M
    Microsc Microanal; 2014 Apr; 20(2):385-93. PubMed ID: 24641815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of bromide in hydrogen peroxide oxidation of CTAB-stabilized gold nanorods in aqueous solutions.
    Zhu Q; Wu J; Zhao J; Ni W
    Langmuir; 2015 Apr; 31(14):4072-7. PubMed ID: 25785656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer.
    Alkilany AM; Frey RL; Ferry JL; Murphy CJ
    Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of freeze-thawing on lipid bilayer-protected gold nanoparticles.
    Zhang L; Li P; Li D; Guo S; Wang E
    Langmuir; 2008 Apr; 24(7):3407-11. PubMed ID: 18278967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphoton fabrication of freeform polymer microstructures with gold nanorods.
    Kuo WS; Lien CH; Cho KC; Chang CY; Lin CY; Huang LL; Campagnola PJ; Dong CY; Chen SJ
    Opt Express; 2010 Dec; 18(26):27550-9. PubMed ID: 21197029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods.
    Jain T; Westerlund F; Johnson E; Moth-Poulsen K; Bjørnholm T
    ACS Nano; 2009 Apr; 3(4):828-34. PubMed ID: 19284731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective replacement of cetyltrimethylammonium bromide (CTAB) by mercaptoalkanoic acids on gold nanorod (AuNR) surfaces in aqueous solutions.
    Del Caño R; Gisbert-González JM; González-Rodríguez J; Sánchez-Obrero G; Madueño R; Blázquez M; Pineda T
    Nanoscale; 2020 Jan; 12(2):658-668. PubMed ID: 31829396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTAB promoted synthesis of Au nanorods--temperature effects and stability considerations.
    Becker R; Liedberg B; Käll PO
    J Colloid Interface Sci; 2010 Mar; 343(1):25-30. PubMed ID: 19954787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity.
    Wang L; Jiang X; Ji Y; Bai R; Zhao Y; Wu X; Chen C
    Nanoscale; 2013 Sep; 5(18):8384-91. PubMed ID: 23873113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of surface functionalization of Gold Nanorods for reduced effect on IgG stability and minimization of cytotoxicity.
    Alex SA; Rajiv S; Chakravarty S; Chandrasekaran N; Mukherjee A
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():744-754. PubMed ID: 27987768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Gold Nanorods@Thiolated Pectin on the Killing of HeLa Cells by Photothermal Ablation.
    Beltran O; Luna M; Gastelum M; Costa-Santos A; Cambón A; Taboada P; López-Mata MA; Topete A; Juarez J
    Pharmaceutics; 2023 Nov; 15(11):. PubMed ID: 38004550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Transformation of Nanorods to Nanowires: Reversible Growth and Dissolution of Anisotropic Gold Nanostructures.
    Khanal BP; Zubarev ER
    ACS Nano; 2019 Feb; 13(2):2370-2378. PubMed ID: 30753055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trafficking of gold nanorods in breast cancer cells: uptake, lysosome maturation, and elimination.
    Zhang W; Ji Y; Wu X; Xu H
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9856-65. PubMed ID: 24033123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Aspects of the Gold Nanorod Formation Mechanism via Seed-Mediated Methods Revealed by Molecular Dynamics Simulations.
    da Silva JA; Meneghetti MR
    Langmuir; 2018 Jan; 34(1):366-375. PubMed ID: 29243933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gram-Scale Synthesis of Isolated Monodisperse Gold Nanorods.
    Khanal BP; Zubarev ER
    Chemistry; 2019 Jan; 25(6):1595-1600. PubMed ID: 30471145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequestration of Cetyltrimethylammonium Bromide on Gold Nanorods by Human Serum Albumin Causes Its Conformation Change.
    Azman N'; Thanh NX; Yong Kah JC
    Langmuir; 2020 Jan; 36(1):388-396. PubMed ID: 31826617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.