These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 19923720)
1. Dwelling in the dark: procedures for the crystallography of phytochromes and other photochromic proteins. Mailliet J; Psakis G; Schroeder C; Kaltofen S; Dürrwang U; Hughes J; Essen LO Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1232-5. PubMed ID: 19923720 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1. Mailliet J; Psakis G; Feilke K; Sineshchekov V; Essen LO; Hughes J J Mol Biol; 2011 Oct; 413(1):115-27. PubMed ID: 21888915 [TBL] [Abstract][Full Text] [Related]
3. Heteronuclear NMR investigation on the structure and dynamics of the chromophore binding pocket of the cyanobacterial phytochrome Cph1. Hahn J; Strauss HM; Schmieder P J Am Chem Soc; 2008 Aug; 130(33):11170-8. PubMed ID: 18642805 [TBL] [Abstract][Full Text] [Related]
4. [Study on the reconstitution in vitro and photochemical activities of phytochrome from the Synechocystis sp. PCC6803]. Dong YR; Ran Y; Zhao KH; Zhou M Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):238-44. PubMed ID: 15969115 [TBL] [Abstract][Full Text] [Related]
5. Solution-state (15)N NMR spectroscopic study of alpha-C-phycocyanin: implications for the structure of the chromophore-binding pocket of the cyanobacterial phytochrome Cph1. Hahn J; Kühne R; Schmieder P Chembiochem; 2007 Dec; 8(18):2249-55. PubMed ID: 17973280 [TBL] [Abstract][Full Text] [Related]
6. NMR spectroscopic investigation of mobility and hydrogen bonding of the chromophore in the binding pocket of phytochrome proteins. Röben M; Hahn J; Klein E; Lamparter T; Psakis G; Hughes J; Schmieder P Chemphyschem; 2010 Apr; 11(6):1248-57. PubMed ID: 20340123 [TBL] [Abstract][Full Text] [Related]
7. Formation of the early photoproduct lumi-R of cyanobacterial phytochrome cph1 observed by ultrafast mid-infrared spectroscopy. van Thor JJ; Ronayne KL; Towrie M J Am Chem Soc; 2007 Jan; 129(1):126-32. PubMed ID: 17199291 [TBL] [Abstract][Full Text] [Related]
8. The chromophore structure of the cyanobacterial phytochrome Cph1 as predicted by time-dependent density functional theory. Matute RA; Contreras R; Pérez-Hernández G; González L J Phys Chem B; 2008 Dec; 112(51):16253-6. PubMed ID: 19368024 [TBL] [Abstract][Full Text] [Related]
9. Evolution of cyanobacterial and plant phytochromes. Lamparter T FEBS Lett; 2004 Aug; 573(1-3):1-5. PubMed ID: 15327965 [TBL] [Abstract][Full Text] [Related]
10. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens. Scheerer P; Michael N; Park JH; Noack S; Förster C; Hammam MA; Inomata K; Choe HW; Lamparter T; Krauss N J Struct Biol; 2006 Jan; 153(1):97-102. PubMed ID: 16377207 [TBL] [Abstract][Full Text] [Related]
11. Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1. Strauss HM; Schmieder P; Hughes J FEBS Lett; 2005 Jul; 579(18):3970-4. PubMed ID: 16004995 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Synechocystis PCC 6803. Anders K; von Stetten D; Mailliet J; Kiontke S; Sineshchekov VA; Hildebrandt P; Hughes J; Essen LO Photochem Photobiol; 2011; 87(1):160-73. PubMed ID: 21091956 [TBL] [Abstract][Full Text] [Related]
13. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. Velazquez Escobar F; Lang C; Takiden A; Schneider C; Balke J; Hughes J; Alexiev U; Hildebrandt P; Mroginski MA J Phys Chem B; 2017 Jan; 121(1):47-57. PubMed ID: 27966353 [TBL] [Abstract][Full Text] [Related]
14. Spectral properties of phytochrome Agp2 from Agrobacterium tumefaciens are specifically modified by a compound of the cell extract. Krieger A; Molina I; Oberpichler I; Michael N; Lamparter T J Photochem Photobiol B; 2008 Oct; 93(1):16-22. PubMed ID: 18693034 [TBL] [Abstract][Full Text] [Related]
15. 15N MAS NMR studies of cph1 phytochrome: Chromophore dynamics and intramolecular signal transduction. Rohmer T; Strauss H; Hughes J; de Groot H; Gärtner W; Schmieder P; Matysik J J Phys Chem B; 2006 Oct; 110(41):20580-5. PubMed ID: 17034247 [TBL] [Abstract][Full Text] [Related]
16. A second photochromic bacteriophytochrome from Synechocystis sp. PCC 6803: spectral analysis and down-regulation by light. Park CM; Kim JI; Yang SS; Kang JG; Kang JH; Shim JY; Chung YH; Park YM; Song PS Biochemistry; 2000 Sep; 39(35):10840-7. PubMed ID: 10978170 [TBL] [Abstract][Full Text] [Related]
17. Real time spectral analysis during phytochrome chromophore and chromoprotein purification. Zeidler M; Lang C; Hahn J; Hughes J Int J Biol Macromol; 2006 Aug; 39(1-3):100-3. PubMed ID: 16616774 [TBL] [Abstract][Full Text] [Related]
18. Homologous expression of a bacterial phytochrome. The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore. Quest B; Hübschmann T; Sharda S; Tandeau de Marsac N; Gärtner W FEBS J; 2007 Apr; 274(8):2088-98. PubMed ID: 17388813 [TBL] [Abstract][Full Text] [Related]
19. Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1. van Thor JJ; Mackeen M; Kuprov I; Dwek RA; Wormald MR Biophys J; 2006 Sep; 91(5):1811-22. PubMed ID: 16751241 [TBL] [Abstract][Full Text] [Related]
20. Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa. Tasler R; Moises T; Frankenberg-Dinkel N FEBS J; 2005 Apr; 272(8):1927-36. PubMed ID: 15819886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]