These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19923771)

  • 1. Evaluation of alternative electron donors for denitrifying moving bed biofilm reactors (MBBRs).
    Bill KA; Bott CB; Murthy SN
    Water Sci Technol; 2009; 60(10):2647-57. PubMed ID: 19923771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor.
    Labelle MA; Juteau P; Jolicoeur M; Villemur R; Parent S; Comeau Y
    Water Res; 2005 Sep; 39(14):3409-17. PubMed ID: 16023699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method to identify potential phosphorus rate-limiting conditions in post-denitrification biofilm reactors within systems designed for simultaneous low-level effluent nitrogen and phosphorus concentrations.
    Boltz JP; Morgenroth E; Daigger GT; deBarbadillo C; Murthy S; Sørensen KH; Stinson B
    Water Res; 2012 Dec; 46(19):6228-38. PubMed ID: 23058109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.
    Wantawin C; Juateea J; Noophan PL; Munakata-Marr J
    Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balancing yield, kinetics and cost for three external carbon sources used for suspended growth post-denitrification.
    Mokhayeri Y; Riffat R; Murthy S; Bailey W; Takacs I; Bott C
    Water Sci Technol; 2009; 60(10):2485-91. PubMed ID: 19923753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of external carbon dose on the removal of micropollutants using methanol and ethanol in post-denitrifying Moving Bed Biofilm Reactors.
    Torresi E; Escolà Casas M; Polesel F; Plósz BG; Christensson M; Bester K
    Water Res; 2017 Jan; 108():95-105. PubMed ID: 27871747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of denitrification potential in carbonaceous trickling filters.
    Biesterfeld S; Farmer G; Figueroa L; Parker D; Russell P
    Water Res; 2003 Sep; 37(16):4011-7. PubMed ID: 12909121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate removal characteristics of high performance fluidized-bed biofilm reactors.
    Rabah FK; Dahab MF
    Water Res; 2004 Oct; 38(17):3719-28. PubMed ID: 15350424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.
    Comett-Ambriz I; Gonzalez-Martinez S; Wilderer P
    Water Sci Technol; 2003; 47(12):155-61. PubMed ID: 12926683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrification/denitrification in swine wastewater using porous ceramic sticks with plastic rings as supporting media in two-stage fixed-biofilm reactors.
    Lin YH
    Water Sci Technol; 2010; 62(5):985-94. PubMed ID: 20818037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing denitrification kinetics at cold temperature using various carbon sources in lab-scale sequencing batch reactors.
    Mokhayeri Y; Riffat R; Takacs I; Dold P; Bott C; Hinojosa J; Bailey W; Murthy S
    Water Sci Technol; 2008; 58(1):233-8. PubMed ID: 18653959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of organic loading rate on a wastewater treatment process combining moving bed biofilm and membrane reactors.
    Melin E; Leiknes T; Helness H; Rasmussen V; Odegaard H
    Water Sci Technol; 2005; 51(6-7):421-30. PubMed ID: 16004004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pumped flow biofilm reactors (PFBR) for treating municipal wastewater.
    O'Reilly E; Rodgers M; Zhan XM
    Water Sci Technol; 2008; 57(12):1857-65. PubMed ID: 18587171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of denitrification by denitrifying phosphorus removing bacteria using sequentially combined carbon.
    Cho ES; Ahn KH; Molof AH
    Water Sci Technol; 2004; 50(8):33-40. PubMed ID: 15566184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors.
    Bassin JP; Kleerebezem R; Rosado AS; van Loosdrecht MC; Dezotti M
    Environ Sci Technol; 2012 Feb; 46(3):1546-55. PubMed ID: 22243035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperature.
    Luostarinen S; Luste S; Valentín L; Rintala J
    Water Res; 2006 May; 40(8):1607-15. PubMed ID: 16647521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the capacity for treatment of chemical plant wastewater by replacing existing suspended carrier media with Kaldnes Moving Bed media at a plant in Singapore.
    Wessman FG; Yan Yuegen E; Zheng Q; He G; Welander T; Rusten B
    Water Sci Technol; 2004; 49(11-12):199-205. PubMed ID: 15303742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term operation of membrane biofilm reactors for nitrogen removal with autotrophic bacteria.
    Hwang JH; Cicek N; Oleszkiewicz JA
    Water Sci Technol; 2009; 60(9):2405-12. PubMed ID: 19901473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor.
    Beliavski M; Meerovich I; Tarre S; Green M
    Water Sci Technol; 2010; 61(4):911-7. PubMed ID: 20182069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.