BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19923772)

  • 1. Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling.
    Duran M; Yurtsever D; Dunaev T
    Water Sci Technol; 2009; 60(10):2659-68. PubMed ID: 19923772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic characterization of Escherichia coli through whole-cell fatty acid profiling to investigate host specificity.
    Haznedaroglu BZ; Yurtsever D; Lefkowitz JR; Duran M
    Water Res; 2007 Feb; 41(4):803-9. PubMed ID: 17234236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial source tracking using host specific FAME profiles of fecal coliforms.
    Duran M; Haznedaroğlu BZ; Zitomer DH
    Water Res; 2006 Jan; 40(1):67-74. PubMed ID: 16360192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed.
    Moore DF; Harwood VJ; Ferguson DM; Lukasik J; Hannah P; Getrich M; Brownell M
    J Appl Microbiol; 2005; 99(3):618-28. PubMed ID: 16108804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial source tracking in a rural watershed dominated by cattle.
    Graves AK; Hagedorn C; Brooks A; Hagedorn RL; Martin E
    Water Res; 2007 Aug; 41(16):3729-39. PubMed ID: 17582454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study.
    Harwood VJ; Wiggins B; Hagedorn C; Ellender RD; Gooch J; Kern J; Samadpour M; Chapman AC; Robinson BJ; Thompson BC
    J Water Health; 2003 Dec; 1(4):153-66. PubMed ID: 15382721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fidelity of bacterial source tracking: Escherichia coli vs Enterococcus spp and minimizing assignment of isolates from nonlibrary sources.
    Hassan WM; Ellender RD; Wang SY
    J Appl Microbiol; 2007 Feb; 102(2):591-8. PubMed ID: 17241366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discriminant analysis of fecal bacterial species composition for use as a phenotypic microbial source tracking method.
    Evenson CJ; Strevett KA
    Res Microbiol; 2006 Jun; 157(5):437-44. PubMed ID: 16725314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon source utilization profiles as a method to identify sources of faecal pollution in water.
    Hagedorn C; Crozier JB; Mentz KA; Booth AM; Graves AK; Nelson NJ; Reneau RB
    J Appl Microbiol; 2003; 94(5):792-9. PubMed ID: 12694443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct comparison of four bacterial source tracking methods and use of composite data sets.
    Casarez EA; Pillai SD; Mott JB; Vargas M; Dean KE; Di Giovanni GD
    J Appl Microbiol; 2007 Aug; 103(2):350-64. PubMed ID: 17650195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel application of a statistical technique, Random Forests, in a bacterial source tracking study.
    Smith A; Sterba-Boatwright B; Mott J
    Water Res; 2010 Jul; 44(14):4067-76. PubMed ID: 20566209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the 16S-23S rDNA intergenic spacer region in Enterococcus spp. for microbial source tracking.
    Dickerson JW; Crozier JB; Hagedorn C; Hassall A
    J Environ Qual; 2007; 36(6):1661-9. PubMed ID: 17940266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial source tracking by DNA sequence analysis of the Escherichia coli malate dehydrogenase gene.
    Ivanetich KM; Hsu PH; Wunderlich KM; Messenger E; Walkup WG; Scott TM; Lukasik J; Davis J
    J Microbiol Methods; 2006 Dec; 67(3):507-26. PubMed ID: 16973226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces.
    Silkie SS; Nelson KL
    Water Res; 2009 Nov; 43(19):4860-71. PubMed ID: 19765792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations when using discriminant function analysis of antimicrobial resistance profiles to identify sources of fecal contamination of surface water in Michigan.
    Kaneene JB; Miller R; Sayah R; Johnson YJ; Gilliland D; Gardiner JC
    Appl Environ Microbiol; 2007 May; 73(9):2878-90. PubMed ID: 17337537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Enterococcus spp. from human and animal feces using 16S rRNA sequences, the esp gene, and PFGE for microbial source tracking in Korea.
    Kim SY; Lee JE; Lee S; Lee HT; Hur HG; Ko G
    Environ Sci Technol; 2010 May; 44(9):3423-8. PubMed ID: 20356091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying fecal sources in a selected catchment reach using multiple source-tracking tools.
    Vogel JR; Stoeckel DM; Lamendella R; Zelt RB; Santo Domingo JW; Walker SR; Oerther DB
    J Environ Qual; 2007; 36(3):718-29. PubMed ID: 17412907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples.
    Griffith JF; Weisberg SB; McGee CD
    J Water Health; 2003 Dec; 1(4):141-51. PubMed ID: 15382720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Escherichia coli isolates from different fecal sources by means of classification tree analysis of fatty acid methyl ester (FAME) profiles.
    Seurinck S; Deschepper E; Deboch B; Verstraete W; Siciliano S
    Environ Monit Assess; 2006 Mar; 114(1-3):433-45. PubMed ID: 16570218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and validation of rep-PCR genotypic libraries for microbial source tracking of environmental Escherichia coli isolates.
    Lyautey E; Lu Z; Lapen DR; Berkers TE; Edge TA; Topp E
    Can J Microbiol; 2010 Jan; 56(1):8-17. PubMed ID: 20130688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.