BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 19924215)

  • 1. Systems-level dynamic analyses of fate change in murine embryonic stem cells.
    Lu R; Markowetz F; Unwin RD; Leek JT; Airoldi EM; MacArthur BD; Lachmann A; Rozov R; Ma'ayan A; Boyer LA; Troyanskaya OG; Whetton AD; Lemischka IR
    Nature; 2009 Nov; 462(7271):358-62. PubMed ID: 19924215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping dynamic histone acetylation patterns to gene expression in nanog-depleted murine embryonic stem cells.
    Markowetz F; Mulder KW; Airoldi EM; Lemischka IR; Troyanskaya OG
    PLoS Comput Biol; 2010 Dec; 6(12):e1001034. PubMed ID: 21187909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulatory mechanisms that govern embryonic stem cell fate.
    Das S; Levasseur D
    Methods Mol Biol; 2013; 1029():191-203. PubMed ID: 23756950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells.
    Gonzales-Cope M; Sidoli S; Bhanu NV; Won KJ; Garcia BA
    BMC Genomics; 2016 Feb; 17():95. PubMed ID: 26847871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis.
    Mendoza-Parra MA; Malysheva V; Mohamed Saleem MA; Lieb M; Godel A; Gronemeyer H
    Genome Res; 2016 Nov; 26(11):1505-1519. PubMed ID: 27650846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation.
    Morey L; Santanach A; Di Croce L
    Mol Cell Biol; 2015 Aug; 35(16):2716-28. PubMed ID: 26031336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation.
    Qiao Y; Wang R; Yang X; Tang K; Jing N
    J Biol Chem; 2015 Jan; 290(4):2508-20. PubMed ID: 25519907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation.
    Atkinson S; Armstrong L
    Cell Tissue Res; 2008 Jan; 331(1):23-9. PubMed ID: 18004593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brd4's Bromodomains Mediate Histone H3 Acetylation and Chromatin Remodeling in Pluripotent Cells through P300 and Brg1.
    Wu T; Kamikawa YF; Donohoe ME
    Cell Rep; 2018 Nov; 25(7):1756-1771. PubMed ID: 30428346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative splicing links histone modifications to stem cell fate decision.
    Xu Y; Zhao W; Olson SD; Prabhakara KS; Zhou X
    Genome Biol; 2018 Sep; 19(1):133. PubMed ID: 30217220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-species transcriptional profiles establish a functional portrait of embryonic stem cells.
    Sun Y; Li H; Liu Y; Shin S; Mattson MP; Rao MS; Zhan M
    Genomics; 2007 Jan; 89(1):22-35. PubMed ID: 17055697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic tracking of cell fate changes.
    Kim J; Orkin SH
    Nat Biotechnol; 2010 Feb; 28(2):146-7. PubMed ID: 20139953
    [No Abstract]   [Full Text] [Related]  

  • 13. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells.
    Yang J; Chai L; Fowles TC; Alipio Z; Xu D; Fink LM; Ward DC; Ma Y
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19756-61. PubMed ID: 19060217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionarily conserved transcriptional co-expression guiding embryonic stem cell differentiation.
    Sun Y; Li H; Liu Y; Mattson MP; Rao MS; Zhan M
    PLoS One; 2008; 3(10):e3406. PubMed ID: 18923680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating post-transcriptional regulation into the embryonic stem cell gene regulatory network.
    Cassar PA; Stanford WL
    J Cell Physiol; 2012 Feb; 227(2):439-49. PubMed ID: 21503874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis in cardiomyocyte-specific differentiation of murine embryonic stem cells reveals transcriptional regulation network.
    Gan L; Schwengberg S; Denecke B
    Gene Expr Patterns; 2014 Sep; 16(1):8-22. PubMed ID: 25058891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic epigenetic regulation of the Oct4 and Nanog regulatory regions during neural differentiation in rhesus nuclear transfer embryonic stem cells.
    Wang K; Chen Y; Chang EA; Knott JG; Cibelli JB
    Cloning Stem Cells; 2009 Dec; 11(4):483-96. PubMed ID: 20025521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal.
    O'Brien RN; Shen Z; Tachikawa K; Lee PA; Briggs SP
    Mol Cell Proteomics; 2010 Oct; 9(10):2238-51. PubMed ID: 20513800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanog requires BRD4 to maintain murine embryonic stem cell pluripotency and is suppressed by bromodomain inhibitor JQ1 together with Lefty1.
    Horne GA; Stewart HJ; Dickson J; Knapp S; Ramsahoye B; Chevassut T
    Stem Cells Dev; 2015 Apr; 24(7):879-91. PubMed ID: 25393219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.