These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19924260)

  • 1. Random state transitions of knots: a first step towards modeling unknotting by type II topoisomerases.
    Hua X; Nguyen D; Raghavan B; Arsuaga J; Vazquez M
    Topol Appl; 2007 Apr; 154(7):1381-1397. PubMed ID: 19924260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases.
    Liu Z; Mann JK; Zechiedrich EL; Chan HS
    J Mol Biol; 2006 Aug; 361(2):268-85. PubMed ID: 16842819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local selection rules that can determine specific pathways of DNA unknotting by type II DNA topoisomerases.
    Burnier Y; Weber C; Flammini A; Stasiak A
    Nucleic Acids Res; 2007; 35(15):5223-31. PubMed ID: 17670794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological transformations of synthetic DNA knots.
    Du SM; Wang H; Tse-Dinh YC; Seeman NC
    Biochemistry; 1995 Jan; 34(2):673-82. PubMed ID: 7819263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tying different knots in a molecular strand.
    Leigh DA; Schaufelberger F; Pirvu L; Stenlid JH; August DP; Segard J
    Nature; 2020 Aug; 584(7822):562-568. PubMed ID: 32848222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break.
    Liu LF; Liu CC; Alberts BM
    Cell; 1980 Mar; 19(3):697-707. PubMed ID: 6244895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin Loop Extrusion and Chromatin Unknotting.
    Racko D; Benedetti F; Goundaroulis D; Stasiak A
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic pathways of topology simplification by Type-II topoisomerases in knotted supercoiled DNA.
    Ziraldo R; Hanke A; Levene SD
    Nucleic Acids Res; 2019 Jan; 47(1):69-84. PubMed ID: 30476194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Untangling Knots Via Reaction-Diffusion Dynamics of Vortex Strings.
    Maucher F; Sutcliffe P
    Phys Rev Lett; 2016 Apr; 116(17):178101. PubMed ID: 27176541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of action of DNA topoisomerases to investigate boundaries and shapes of spaces of knots.
    Flammini A; Maritan A; Stasiak A
    Biophys J; 2004 Nov; 87(5):2968-75. PubMed ID: 15326026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossing-sign discrimination and knot-reduction for a lattice model of strand passage.
    Soteros C; Szafron M
    Biochem Soc Trans; 2013 Apr; 41(2):576-81. PubMed ID: 23514157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knotting fingerprints resolve knot complexity and knotting pathways in ideal knots.
    Hyde DA; Henrich J; Rawdon EJ; Millett KC
    J Phys Condens Matter; 2015 Sep; 27(35):354112. PubMed ID: 26291619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D visualization software to analyze topological outcomes of topoisomerase reactions.
    Darcy IK; Scharein RG; Stasiak A
    Nucleic Acids Res; 2008 Jun; 36(11):3515-21. PubMed ID: 18440983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subknots in ideal knots, random knots, and knotted proteins.
    Rawdon EJ; Millett KC; Stasiak A
    Sci Rep; 2015 Mar; 5():8928. PubMed ID: 25753957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological descriptions of protein folding.
    Flapan E; He A; Wong H
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9360-9369. PubMed ID: 31000594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grid diagrams as tools to investigate knot spaces and topoisomerase-mediated simplification of DNA topology.
    Barbensi A; Celoria D; Harrington HA; Stasiak A; Buck D
    Sci Adv; 2020 Feb; 6(9):eaay1458. PubMed ID: 32133398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a knot on the strength of a polymer strand.
    Saitta AM; Soper PD; Wasserman E; Klein ML
    Nature; 1999 May; 399(6731):46-8. PubMed ID: 10331387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent rationalization of type-2 topoisomerases' unknotting, decatenating, supercoil-relaxing actions and their scaling relation.
    Liu Z; Chan HS
    J Phys Condens Matter; 2015 Sep; 27(35):354103. PubMed ID: 26291958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercoiled DNA-directed knotting by T4 topoisomerase.
    Wasserman SA; Cozzarelli NR
    J Biol Chem; 1991 Oct; 266(30):20567-73. PubMed ID: 1657929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling behavior of knotted random polygons and self-avoiding polygons: Topological swelling with enhanced exponent.
    Uehara E; Deguchi T
    J Chem Phys; 2017 Dec; 147(21):214901. PubMed ID: 29221412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.