BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19924539)

  • 1. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device.
    Zhu L; Li Y; Zhang Q; Wang H; Zhu M
    Biomed Microdevices; 2010 Feb; 12(1):169-77. PubMed ID: 19924539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of agar microparticles using temperature-controlled microfluidic devices for Cordyceps militaris cultivation.
    Lin YS; Yang CH; Lu K; Huang KS; Zheng YZ
    Electrophoresis; 2011 Nov; 32(22):3157-63. PubMed ID: 22012813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device.
    Lan W; Li S; Xu J; Luo G
    Langmuir; 2011 Nov; 27(21):13242-7. PubMed ID: 21899338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A micro-reactor for preparing uniform molecularly imprinted polymer beads.
    Zourob M; Mohr S; Mayes AG; Macaskill A; Pérez-Moral N; Fielden PR; Goddard NJ
    Lab Chip; 2006 Feb; 6(2):296-301. PubMed ID: 16450041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and validation of low cost microfluidic chips using a shrinking approach.
    Focaroli S; Mazzitelli S; Falconi M; Luca G; Nastruzzi C
    Lab Chip; 2014 Oct; 14(20):4007-16. PubMed ID: 25144915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices.
    Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM
    Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic fabrication of SERS-active microspheres for molecular detection.
    Hwang H; Kim SH; Yang SM
    Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of monodisperse PLGA-alginate core-shell microspheres with monodisperse size and homogeneous shells for controlled drug release.
    Wu J; Kong T; Yeung KW; Shum HC; Cheung KM; Wang L; To MK
    Acta Biomater; 2013 Jul; 9(7):7410-9. PubMed ID: 23535235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations.
    Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L
    J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional axisymmetric flow-focusing device using stereolithography.
    Morimoto Y; Tan WH; Takeuchi S
    Biomed Microdevices; 2009 Apr; 11(2):369-77. PubMed ID: 19009352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of large-area polymer microfilter membranes and their application for particle and cell enrichment.
    Hernández-Castro JA; Li K; Meunier A; Juncker D; Veres T
    Lab Chip; 2017 May; 17(11):1960-1969. PubMed ID: 28443860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.