These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19924539)

  • 41. Fabrication of ceramic microspheres by diffusion-induced sol-gel reaction in double emulsions.
    Zhang L; Hao S; Liu B; Shum HC; Li J; Chen H
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11489-93. PubMed ID: 23865771
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controllable preparation of nanoparticle-coated chitosan microspheres in a co-axial microfluidic device.
    Lan W; Li S; Xu J; Luo G
    Lab Chip; 2011 Feb; 11(4):652-7. PubMed ID: 21184010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dielectrophoresis of reverse phase emulsions.
    Flores-Rodriguez N; Bryning Z; Markx GH
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):137-44. PubMed ID: 16441170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A ferrofluid guided system for the rapid separation of the non-magnetic particles in a microfluidic device.
    Asmatulu R; Zhang B; Nuraje N
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6383-7. PubMed ID: 21137734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A photonic-microfluidic integrated device for reliable fluorescence detection and counting.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2012 Nov; 33(21):3236-44. PubMed ID: 23065957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates.
    Benson BR; Stone HA; Prud'homme RK
    Lab Chip; 2013 Dec; 13(23):4507-11. PubMed ID: 24122050
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facile preparation of fluorescence-encoded microspheres based on microfluidic system.
    Zhao Y; Chen W; Peng C; Liu L; Xue F; Zhu S; Kuang H; Xu C
    J Colloid Interface Sci; 2010 Dec; 352(2):337-42. PubMed ID: 20850131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices.
    Xu Y; Takai M; Ishihara K
    Ann Biomed Eng; 2010 Jun; 38(6):1938-53. PubMed ID: 20358288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human genomic DNA isolation from whole blood using a simple microfluidic system with silica- and polymer-based stationary phases.
    Günal G; Kip Ç; Öğüt SE; Usta DD; Şenlik E; Kibar G; Tuncel A
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():10-20. PubMed ID: 28254272
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability.
    Shum HC; Kim JW; Weitz DA
    J Am Chem Soc; 2008 Jul; 130(29):9543-9. PubMed ID: 18576631
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications.
    Lin YH; Chen CT; Huang LL; Lee GB
    Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals.
    Xu X; Asher SA
    J Am Chem Soc; 2004 Jun; 126(25):7940-5. PubMed ID: 15212543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transition of MEMS technology to nanofabrication.
    Luesebrink H; Glinsner T; Jakeway SC; Crabtree HJ; Cameron NS; Roberge H; Veres T
    J Nanosci Nanotechnol; 2005 Jun; 5(6):864-8. PubMed ID: 16060144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Superparamagnetic microspheres with controlled macroporosity generated in microfluidic devices.
    Paquet C; Jakubek ZJ; Simard B
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4934-41. PubMed ID: 22900593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.