These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19924539)

  • 61. Bio-mimetic silicone cilia for microfluidic manipulation.
    Oh K; Chung JH; Devasia S; Riley JJ
    Lab Chip; 2009 Jun; 9(11):1561-6. PubMed ID: 19458863
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Partitioned EDGE devices for high throughput production of monodisperse emulsion droplets with two distinct sizes.
    Sahin S; Schroën K
    Lab Chip; 2015 Jun; 15(11):2486-95. PubMed ID: 25953515
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.
    Lee JT; George MC; Moore JS; Braun PV
    J Am Chem Soc; 2009 Aug; 131(32):11294-5. PubMed ID: 19637870
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device.
    Xu JH; Li SW; Tan J; Wang YJ; Luo GS
    Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A practical interface for microfluidics and nanoelectrospray mass spectrometry.
    Freire SL; Yang H; Wheeler AR
    Electrophoresis; 2008 May; 29(9):1836-43. PubMed ID: 18393343
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fabrication of uniform-sized poly-ɛ-caprolactone microspheres and their applications in human embryonic stem cell culture.
    Li J; Lam AT; Toh JP; Reuveny S; Oh SK; Birch WR
    Biomed Microdevices; 2015 Dec; 17(6):105. PubMed ID: 26458560
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Continuous labeling of circulating tumor cells with microbeads using a vortex micromixer for highly selective isolation.
    Lin MX; Hyun KA; Moon HS; Sim TS; Lee JG; Park JC; Lee SS; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):63-7. PubMed ID: 22784495
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel microfluidic approach for monodispersed chitosan microspheres with controllable structures.
    Xu JH; Zhao H; Lan WJ; Luo GS
    Adv Healthc Mater; 2012 Jan; 1(1):106-11. PubMed ID: 23184694
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Continuous microfluidic fabrication of synthetic asymmetric vesicles.
    Lu L; Schertzer JW; Chiarot PR
    Lab Chip; 2015 Sep; 15(17):3591-9. PubMed ID: 26220822
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Facile fabrication of monodisperse polymer hollow spheres.
    Lv H; Lin Q; Zhang K; Yu K; Yao T; Zhang X; Zhang J; Yang B
    Langmuir; 2008 Dec; 24(23):13736-41. PubMed ID: 18954151
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications.
    Duarte AR; Ünal B; Mano JF; Reis RL; Jensen KF
    Langmuir; 2014 Oct; 30(41):12391-9. PubMed ID: 25263163
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device.
    Capretto L; Mazzitelli S; Nastruzzi C
    J Control Release; 2012 Jun; 160(3):409-17. PubMed ID: 22542700
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Principles of transverse flow fractionation of microparticles in superhydrophobic channels.
    Asmolov ES; Dubov AL; Nizkaya TV; Kuehne AJ; Vinogradova OI
    Lab Chip; 2015 Jul; 15(13):2835-41. PubMed ID: 26016651
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles.
    Huang KS; Lai TH; Lin YC
    Lab Chip; 2006 Jul; 6(7):954-7. PubMed ID: 16804602
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Collagen microsphere production on a chip.
    Hong S; Hsu HJ; Kaunas R; Kameoka J
    Lab Chip; 2012 Sep; 12(18):3277-80. PubMed ID: 22824954
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hydroxyapatite-armored poly(ε-caprolactone) microspheres and hydroxyapatite microcapsules fabricated via a Pickering emulsion route.
    Fujii S; Okada M; Nishimura T; Maeda H; Sugimoto T; Hamasaki H; Furuzono T; Nakamura Y
    J Colloid Interface Sci; 2012 May; 374(1):1-8. PubMed ID: 22364710
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fabrication and caffeine release from Fe3O4/P(MAA-co-NVP) magnetic microspheres with controllable core-shell architecture.
    Di HW; Luo YL; Xu F; Chen YS; Nan YF
    J Biomater Sci Polym Ed; 2011; 22(4-6):557-76. PubMed ID: 21144259
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles.
    Lorenz T; Bojko S; Bunjes H; Dietzel A
    Lab Chip; 2018 Feb; 18(4):627-638. PubMed ID: 29345261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.