These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1992466)

  • 1. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors.
    Baumann O; Walz B; Somlyo AV; Somlyo AP
    Proc Natl Acad Sci U S A; 1991 Feb; 88(3):741-4. PubMed ID: 1992466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular calcium localization and AT0-dependent Ca2+-uptake by smooth endoplasmic reticulum in an invertebrate photoreceptor cell. An ultrastrucutral, cytochemical and X-ray microanalytical study.
    Walz B
    Eur J Cell Biol; 1979 Oct; 20(1):83-91. PubMed ID: 160317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation.
    Pivovarova NB; Pozzo-Miller LD; Hongpaisan J; Andrews SB
    J Neurosci; 2002 Dec; 22(24):10653-61. PubMed ID: 12486158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and cellular physiology of Ca2+ stores in invertebrate photoreceptors.
    Walz B; Baumann O
    Cell Calcium; 1995 Oct; 18(4):342-51. PubMed ID: 8556773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular calcium and magnesium mobilization in rat liver stimulated in vivo with vasopressin and glucagon.
    Bond M; Vadasz G; Somlyo AV; Somlyo AP
    J Biol Chem; 1987 Nov; 262(32):15630-6. PubMed ID: 3680216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple modes of calcium-induced calcium release in sympathetic neurons II: a [Ca2+](i)- and location-dependent transition from endoplasmic reticulum Ca accumulation to net Ca release.
    Hongpaisan J; Pivovarova NB; Colegrove SL; Leapman RD; Friel DD; Andrews SB
    J Gen Physiol; 2001 Jul; 118(1):101-12. PubMed ID: 11429447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elemental distribution in Rana pipiens retinal rods: quantitative electron probe analysis.
    Somlyo AP; Walz B
    J Physiol; 1985 Jan; 358():183-95. PubMed ID: 3920385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of calcium by the endoplasmic reticulum of the frog photoreceptor.
    Ungar F; Piscopo I; Letizia J; Holtzman E
    J Cell Biol; 1984 May; 98(5):1645-55. PubMed ID: 6609924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study.
    Somlyo AV; Gonzalez-Serratos HG; Shuman H; McClellan G; Somlyo AP
    J Cell Biol; 1981 Sep; 90(3):577-94. PubMed ID: 6974735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron probe analysis of calcium content and movements in sarcoplasmic reticulum, endoplasmic reticulum, mitochondria, and cytoplasm.
    Somlyo AP; Somlyo AV
    J Cardiovasc Pharmacol; 1986; 8 Suppl 8():S42-7. PubMed ID: 2433524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity of calcium compartmentation: electron probe analysis of renal tubules.
    LeFurgey A; Ingram P; Mandel LJ
    J Membr Biol; 1986; 94(2):191-6. PubMed ID: 3560200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. II. Its properties as revealed by microphotometric measurements.
    Walz B
    J Cell Biol; 1982 Jun; 93(3):849-59. PubMed ID: 6288735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A possible site of calcium regulation in rat exocrine pancreas cells: an X-ray microanalytical study.
    Roos N
    Scanning Microsc; 1988 Mar; 2(1):323-9. PubMed ID: 3368762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal continuity of the subrhabdomeric cisternae in the photoreceptors of the compound eye of the drone, Apis mellifera.
    Skalska-Rakowska JM; Baumgartner B
    Experientia; 1985 Jan; 41(1):43-5. PubMed ID: 3967737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra rapid calcium events in electrically stimulated frog nerve terminals.
    Pezzati R; Meldolesi J; Grohovaz F
    Biochem Biophys Res Commun; 2001 Jul; 285(3):724-7. PubMed ID: 11453653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of sensitivity in photoreceptors of the honey been drone by light and by Ca2+.
    Walz B
    J Comp Physiol A; 1992 Jun; 170(5):605-13. PubMed ID: 1507158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium accumulation in intracellular compartments of frog retinal rod photoreceptors.
    Ungar F; Piscopo I; Holtzman E
    Brain Res; 1981 Jan; 205(1):200-6. PubMed ID: 6970606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo.
    Somlyo AP; Bond M; Somlyo AV
    Nature; 1985 Apr 18-24; 314(6012):622-5. PubMed ID: 3990795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-second quenched-flow/X-ray microanalysis shows rapid Ca2+ mobilization from cortical stores paralleled by Ca2+ influx during synchronous exocytosis in Paramecium cells.
    Hardt M; Plattner H
    Eur J Cell Biol; 2000 Sep; 79(9):642-52. PubMed ID: 11043405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.