BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19924717)

  • 1. Machine learning in genome-wide association studies.
    Szymczak S; Biernacka JM; Cordell HJ; González-Recio O; König IR; Zhang H; Sun YV
    Genet Epidemiol; 2009; 33 Suppl 1():S51-7. PubMed ID: 19924717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data mining, neural nets, trees--problems 2 and 3 of Genetic Analysis Workshop 15.
    Ziegler A; DeStefano AL; König IR; Bardel C; Brinza D; Bull S; Cai Z; Glaser B; Jiang W; Lee KE; Li CX; Li J; Li X; Majoram P; Meng Y; Nicodemus KK; Platt A; Schwarz DF; Shi W; Shugart YY; Stassen HH; Sun YV; Won S; Wang W; Wahba G; Zagaar UA; Zhao Z
    Genet Epidemiol; 2007; 31 Suppl 1():S51-60. PubMed ID: 18046765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian variable and model selection methods for genetic association studies.
    Fridley BL
    Genet Epidemiol; 2009 Jan; 33(1):27-37. PubMed ID: 18618760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning approaches for the discovery of gene-gene interactions in disease data.
    Upstill-Goddard R; Eccles D; Fliege J; Collins A
    Brief Bioinform; 2013 Mar; 14(2):251-60. PubMed ID: 22611119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotype distribution-based inference of collective effects in genome-wide association studies: insights to age-related macular degeneration disease mechanism.
    Woo HJ; Yu C; Kumar K; Gold B; Reifman J
    BMC Genomics; 2016 Aug; 17(1):695. PubMed ID: 27576376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis.
    Ueki M; Tamiya G
    BMC Bioinformatics; 2012 May; 13():72. PubMed ID: 22554139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep hybrid model to detect multi-locus interacting SNPs in the presence of noise.
    Uppu S; Krishna A
    Int J Med Inform; 2018 Nov; 119():134-151. PubMed ID: 30342681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Current status of SNPs interaction in genome-wide association study].
    Li FG; Wang ZP; Hu G; Li H
    Yi Chuan; 2011 Sep; 33(9):901-10. PubMed ID: 21951789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.
    Motsinger-Reif AA; Dudek SM; Hahn LW; Ritchie MD
    Genet Epidemiol; 2008 May; 32(4):325-40. PubMed ID: 18265411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk.
    de Maturana EL; Ye Y; Calle ML; Rothman N; Urrea V; Kogevinas M; Petrus S; Chanock SJ; Tardón A; García-Closas M; González-Neira A; Vellalta G; Carrato A; Navarro A; Lorente-Galdós B; Silverman DT; Real FX; Wu X; Malats N
    PLoS One; 2013; 8(12):e83745. PubMed ID: 24391818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of machine learning and data mining methods to detect associations of rare and common variants with complex traits.
    Lu AT; Austin E; Bonner A; Huang HH; Cantor RM
    Genet Epidemiol; 2014 Sep; 38 Suppl 1():S81-5. PubMed ID: 25112194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bag of Naïve Bayes: biomarker selection and classification from genome-wide SNP data.
    Sambo F; Trifoglio E; Di Camillo B; Toffolo GM; Cobelli C
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S2. PubMed ID: 23095127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A random forest approach to the detection of epistatic interactions in case-control studies.
    Jiang R; Tang W; Wu X; Fu W
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S65. PubMed ID: 19208169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powerful and Adaptive Testing for Multi-trait and Multi-SNP Associations with GWAS and Sequencing Data.
    Kim J; Zhang Y; Pan W;
    Genetics; 2016 Jun; 203(2):715-31. PubMed ID: 27075728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.
    Tuo S; Zhang J; Yuan X; Zhang Y; Liu Z
    PLoS One; 2016; 11(3):e0150669. PubMed ID: 27014873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies.
    Bush WS; Dudek SM; Ritchie MD
    Pac Symp Biocomput; 2009; ():368-79. PubMed ID: 19209715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNP selection in genome-wide association studies via penalized support vector machine with MAX test.
    Kim J; Sohn I; Kim DD; Jung SH
    Comput Math Methods Med; 2013; 2013():340678. PubMed ID: 24174989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis.
    McKinney BA; Crowe JE; Guo J; Tian D
    PLoS Genet; 2009 Mar; 5(3):e1000432. PubMed ID: 19300503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association studies for discrete traits.
    Thomas DC
    Genet Epidemiol; 2009; 33 Suppl 1(Suppl 1):S8-12. PubMed ID: 19924710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.