These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19924841)

  • 1. Application of the compensated arrhenius formalism to dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2009 Dec; 113(50):16118-23. PubMed ID: 19924841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2010 Jul; 114(26):8600-5. PubMed ID: 20552999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of ion transport: the compensated Arrhenius equation.
    Petrowsky M; Frech R
    J Phys Chem B; 2009 Apr; 113(17):5996-6000. PubMed ID: 19338318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.
    Petrowsky M; Glatzhofer DT; Frech R
    J Phys Chem B; 2013 Nov; 117(46):14432-7. PubMed ID: 24156502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.
    Petrowsky M; Fleshman A; Ismail M; Glatzhofer DT; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(33):10098-105. PubMed ID: 22838847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of ion transport in dilute tetrabutylammonium triflate-acetate solutions and self-diffusion in pure acetate liquids.
    Bopege DN; Petrowsky M; Fleshman AM; Frech R; Johnson MB
    J Phys Chem B; 2012 Jan; 116(1):71-6. PubMed ID: 22145961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the compensated Arrhenius formalism to fluidity data of polar organic liquids.
    Petrowsky M; Fleshman AM; Frech R
    J Phys Chem B; 2013 Mar; 117(10):2971-8. PubMed ID: 23414431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport with charge-protected and non-charge-protected cations in alcohol-based electrolytes using the compensated Arrhenius formalism. Part I: ionic conductivity and the static dielectric constant.
    Petrowsky M; Fleshman A; Frech R
    J Phys Chem B; 2012 May; 116(19):5760-5. PubMed ID: 22559992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration dependence of molal conductivity and dielectric constant of 1-alcohol electrolytes using the compensated arrhenius formalism.
    Fleshman AM; Petrowsky M; Frech R
    J Phys Chem B; 2013 May; 117(17):5330-7. PubMed ID: 23527562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.
    Petrowsky M; Fleshman A; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(31):9303-9. PubMed ID: 22845017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.
    Fleshman AM; Forsythe GE; Petrowsky M; Frech R
    J Phys Chem B; 2016 Sep; 120(37):9959-68. PubMed ID: 27580069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensated Arrhenius formalism applied to a conductivity study in poly(propylene glycol) diacrylate monomers.
    Dubois F; Derouiche Y; Leblond JM; Maschke U; Douali R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032601. PubMed ID: 26465489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular model of self diffusion in polar organic liquids: implications for conductivity and fluidity in polar organic liquids and electrolytes.
    Frech R; Petrowsky M
    J Phys Chem B; 2014 Mar; 118(9):2422-32. PubMed ID: 24559237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach.
    Singh T; Kumar A
    J Phys Chem B; 2008 Oct; 112(41):12968-72. PubMed ID: 18811193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric analysis of poly(diallyldimethylammonium chloride) aqueous solution coupled with scaling approach.
    Lian YW; Zhao KS; Yang LK
    Phys Chem Chem Phys; 2010 Jul; 12(25):6732-41. PubMed ID: 20428576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular charge transfer and dielectric solvent relaxation in n-propyl cyanide. N-phenylpyrrole and 4-dimethylamino-4'-cyanostilbene.
    Druzhinin SI; Galievsky VA; Yoshihara T; Zachariasse KA
    J Phys Chem A; 2006 Nov; 110(47):12760-8. PubMed ID: 17125289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic association of the ionic liquids [C4mim][BF4], [C4mim][PF6], and [Cnmim]Br in molecular solvents.
    Wang H; Wang J; Zhang S; Pei Y; Zhuo K
    Chemphyschem; 2009 Oct; 10(14):2516-23. PubMed ID: 19746385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of glass-forming liquids. IX. Structural versus dielectric relaxation in monohydroxy alcohols.
    Wang LM; Richert R
    J Chem Phys; 2004 Dec; 121(22):11170-6. PubMed ID: 15634071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric spectroscopy of some heteronuclear amino alcohol complexes.
    Masoud MS; Shaker MA; Ali AE
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Sep; 65(1):127-32. PubMed ID: 16458054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.