BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19924854)

  • 1. Efficient recognition of an unpaired lesion by a DNA repair glycosylase.
    Lyons DM; O'Brien PJ
    J Am Chem Soc; 2009 Dec; 131(49):17742-3. PubMed ID: 19924854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG).
    Lee CY; Delaney JC; Kartalou M; Lingaraju GM; Maor-Shoshani A; Essigmann JM; Samson LD
    Biochemistry; 2009 Mar; 48(9):1850-61. PubMed ID: 19219989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
    Hendershot JM; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of 1,
    Thelen AZ; O'Brien PJ
    J Biol Chem; 2020 Feb; 295(6):1685-1693. PubMed ID: 31882538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of active site tyrosines with tryptophan alters the free energy for nucleotide flipping by human alkyladenine DNA glycosylase.
    Hendershot JM; Wolfe AE; O'Brien PJ
    Biochemistry; 2011 Mar; 50(11):1864-74. PubMed ID: 21244040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA.
    Taylor EL; O'Brien PJ
    Biochemistry; 2015 Jan; 54(3):898-908. PubMed ID: 25537480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by human alkyladenine DNA glycosylase.
    Wolfe AE; O'Brien PJ
    Biochemistry; 2009 Dec; 48(48):11357-69. PubMed ID: 19883114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase.
    O'Brien PJ; Ellenberger T
    J Biol Chem; 2004 Mar; 279(11):9750-7. PubMed ID: 14688248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
    Hedglin M; O'Brien PJ
    Biochemistry; 2008 Nov; 47(44):11434-45. PubMed ID: 18839966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the Role of Nucleotide Flipping in Enzyme Specificity Using
    Dow BJ; Malik SS; Drohat AC
    J Am Chem Soc; 2019 Mar; 141(12):4952-4962. PubMed ID: 30841696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing Specific and Nonspecific Complexes of Alkyladenine DNA Glycosylase.
    Taylor EL; Kesavan PM; Wolfe AE; O'Brien PJ
    Biochemistry; 2018 Jul; 57(30):4440-4454. PubMed ID: 29940097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the inhibition of human alkyladenine DNA glycosylase (AAG) by 3,N4-ethenocytosine-containing DNA.
    Lingaraju GM; Davis CA; Setser JW; Samson LD; Drennan CL
    J Biol Chem; 2011 Apr; 286(15):13205-13. PubMed ID: 21349833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxanine DNA glycosylase activity from Mammalian alkyladenine glycosylase.
    Hitchcock TM; Dong L; Connor EE; Meira LB; Samson LD; Wyatt MD; Cao W
    J Biol Chem; 2004 Sep; 279(37):38177-83. PubMed ID: 15247209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient Kinetic Methods for Mechanistic Characterization of DNA Binding and Nucleotide Flipping.
    Hendershot JM; O'Brien PJ
    Methods Enzymol; 2017; 592():377-415. PubMed ID: 28668128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Flipping Dynamics of 1, N6-Ethenoadenine in Alkyladenine DNA Glycosylase.
    Liu B; Qi Y; Wang X; Gao X; Yao Y; Zhang L
    J Phys Chem B; 2024 Feb; 128(7):1606-1617. PubMed ID: 38331753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human AP endonuclease 1 stimulates multiple-turnover base excision by alkyladenine DNA glycosylase.
    Baldwin MR; O'Brien PJ
    Biochemistry; 2009 Jun; 48(25):6022-33. PubMed ID: 19449863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.