These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19924854)

  • 21. Requirements for DNA bubble structure for efficient cleavage by helix-two-turn-helix DNA glycosylases.
    Makasheva KA; Endutkin AV; Zharkov DO
    Mutagenesis; 2020 Feb; 35(1):119-128. PubMed ID: 31784740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The efficiency of hypoxanthine excision by alkyladenine DNA glycosylase is altered by changes in nearest neighbor bases.
    Vallur AC; Maher RL; Bloom LB
    DNA Repair (Amst); 2005 Sep; 4(10):1088-98. PubMed ID: 15990363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic Methods for Studying DNA Glycosylases Functioning in Base Excision Repair.
    Coey CT; Drohat AC
    Methods Enzymol; 2017; 592():357-376. PubMed ID: 28668127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).
    van Loon B; Samson LD
    DNA Repair (Amst); 2013 Mar; 12(3):177-87. PubMed ID: 23290262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QM/MM Study of the Reaction Catalyzed by Alkyladenine DNA Glycosylase: Examination of the Substrate Specificity of a DNA Repair Enzyme.
    Lenz SAP; Wetmore SD
    J Phys Chem B; 2017 Dec; 121(49):11096-11108. PubMed ID: 29148771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-glycosyl bond formation catalyzed by human alkyladenine DNA glycosylase.
    Admiraal SJ; O'Brien PJ
    Biochemistry; 2010 Oct; 49(42):9024-6. PubMed ID: 20873830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision.
    Maher RL; Vallur AC; Feller JA; Bloom LB
    DNA Repair (Amst); 2007 Jan; 6(1):71-81. PubMed ID: 17018265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defining the functional footprint for recognition and repair of deaminated DNA.
    Baldwin MR; O'Brien PJ
    Nucleic Acids Res; 2012 Dec; 40(22):11638-47. PubMed ID: 23074184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
    Hollis T; Lau A; Ellenberger T
    Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site.
    O'Brien PJ; Ellenberger T
    J Biol Chem; 2004 Jun; 279(26):26876-84. PubMed ID: 15126496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Searching for DNA lesions: structural evidence for lower- and higher-affinity DNA binding conformations of human alkyladenine DNA glycosylase.
    Setser JW; Lingaraju GM; Davis CA; Samson LD; Drennan CL
    Biochemistry; 2012 Jan; 51(1):382-90. PubMed ID: 22148158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein.
    Hedglin M; O'Brien PJ
    ACS Chem Biol; 2010 Apr; 5(4):427-36. PubMed ID: 20201599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping.
    Hendershot JM; O'Brien PJ
    Nucleic Acids Res; 2014 Nov; 42(20):12681-90. PubMed ID: 25324304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linear free energy correlations for enzymatic base flipping: how do damaged base pairs facilitate specific recognition?
    Krosky DJ; Schwarz FP; Stivers JT
    Biochemistry; 2004 Apr; 43(14):4188-95. PubMed ID: 15065862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG.
    Lau AY; Wyatt MD; Glassner BJ; Samson LD; Ellenberger T
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13573-8. PubMed ID: 11106395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.
    Zhang Y; O'Brien PJ
    ACS Chem Biol; 2015 Nov; 10(11):2606-15. PubMed ID: 26317160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A continuous hyperchromicity assay to characterize the kinetics and thermodynamics of DNA lesion recognition and base excision.
    Minetti CA; Remeta DP; Breslauer KJ
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):70-5. PubMed ID: 18172202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Promiscuous DNA alkyladenine glycosylase dramatically favors a bound lesion over undamaged adenine.
    Alexandrova AN
    Biophys Chem; 2010 Nov; 152(1-3):118-27. PubMed ID: 20840885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct repair of 3,N(4)-ethenocytosine by the human ALKBH2 dioxygenase is blocked by the AAG/MPG glycosylase.
    Fu D; Samson LD
    DNA Repair (Amst); 2012 Jan; 11(1):46-52. PubMed ID: 22079122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.