These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 19924857)
1. Theoretical predictions of size-dependent carrier mobility and polarity in graphene. Long MQ; Tang L; Wang D; Wang L; Shuai Z J Am Chem Soc; 2009 Dec; 131(49):17728-9. PubMed ID: 19924857 [TBL] [Abstract][Full Text] [Related]
2. Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons. Cai Y; Zhang G; Zhang YW J Am Chem Soc; 2014 Apr; 136(17):6269-75. PubMed ID: 24712770 [TBL] [Abstract][Full Text] [Related]
3. Widely tunable carrier mobility of boron nitride-embedded graphene. Wang J; Zhao R; Liu Z; Liu Z Small; 2013 Apr; 9(8):1373-8. PubMed ID: 23512736 [TBL] [Abstract][Full Text] [Related]
4. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity. Xu Y; Dai J; Zeng XC J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716 [TBL] [Abstract][Full Text] [Related]
5. Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction. Chen J; Xi J; Wang D; Shuai Z J Phys Chem Lett; 2013 May; 4(9):1443-8. PubMed ID: 26282296 [TBL] [Abstract][Full Text] [Related]
6. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Chen JH; Jang C; Xiao S; Ishigami M; Fuhrer MS Nat Nanotechnol; 2008 Apr; 3(4):206-9. PubMed ID: 18654504 [TBL] [Abstract][Full Text] [Related]
7. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. Owens FJ J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880 [TBL] [Abstract][Full Text] [Related]
8. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. Long M; Tang L; Wang D; Li Y; Shuai Z ACS Nano; 2011 Apr; 5(4):2593-600. PubMed ID: 21443198 [TBL] [Abstract][Full Text] [Related]
9. First-principles prediction of charge mobility in carbon and organic nanomaterials. Xi J; Long M; Tang L; Wang D; Shuai Z Nanoscale; 2012 Aug; 4(15):4348-69. PubMed ID: 22695470 [TBL] [Abstract][Full Text] [Related]
11. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations. Lee H J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278 [TBL] [Abstract][Full Text] [Related]
12. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Hwang JY; Kuo CC; Chen LC; Chen KH Nanotechnology; 2010 Nov; 21(46):465705. PubMed ID: 20972312 [TBL] [Abstract][Full Text] [Related]
13. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. Chung I; Song JH; Im J; Androulakis J; Malliakas CD; Li H; Freeman AJ; Kenney JT; Kanatzidis MG J Am Chem Soc; 2012 May; 134(20):8579-87. PubMed ID: 22578072 [TBL] [Abstract][Full Text] [Related]
14. Theoretical characterization of a typical hole/exciton-blocking material bathocuproine and its analogues. Gao H; Qin C; Zhang H; Wu S; Su ZM; Wang Y J Phys Chem A; 2008 Sep; 112(38):9097-103. PubMed ID: 18729426 [TBL] [Abstract][Full Text] [Related]
15. Density functional study on the increment of carrier mobility in armchair graphene nanoribbons induced by Stone-Wales defects. Wang G Phys Chem Chem Phys; 2011 Jul; 13(25):11939-45. PubMed ID: 21617799 [TBL] [Abstract][Full Text] [Related]
16. First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons. Xiao J; Long M; Zhang X; Zhang D; Xu H; Chan KS J Phys Chem Lett; 2015 Oct; 6(20):4141-7. PubMed ID: 26722789 [TBL] [Abstract][Full Text] [Related]
17. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects. Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086 [TBL] [Abstract][Full Text] [Related]
18. The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study. Yin WJ; Liu Y; Wen B; Li XB; Chai YF; Wei XL; Ma S; Teobaldi G Dalton Trans; 2021 Jul; 50(29):10252-10260. PubMed ID: 34251008 [TBL] [Abstract][Full Text] [Related]
19. Carrier mobility of MoS2 nanoribbons with edge chemical modification. Xiao J; Long M; Li M; Li X; Xu H; Chan K Phys Chem Chem Phys; 2015 Mar; 17(10):6865-73. PubMed ID: 25672652 [TBL] [Abstract][Full Text] [Related]
20. Charge mobility and transport behavior in the ordered and disordered states of the regioregular poly(3-hexylthiophene). Lan YK; Huang CI J Phys Chem B; 2009 Nov; 113(44):14555-64. PubMed ID: 19813735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]