These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19924893)

  • 1. Water droplets' internal fluidity during horizontal motion on a superhydrophobic surface with an external electric field.
    Sakai M; Kono H; Nakajima A; Sakai H; Abe M; Fujishima A
    Langmuir; 2010 Feb; 26(3):1493-5. PubMed ID: 19924893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces.
    Sakai M; Song JH; Yoshida N; Suzuki S; Kameshima Y; Nakajima A
    Langmuir; 2006 May; 22(11):4906-9. PubMed ID: 16700571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation of water droplets on solid surface in electric field.
    Moukengué Imano A; Beroual A
    J Colloid Interface Sci; 2006 Jun; 298(2):869-79. PubMed ID: 16423362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and deformation of droplets in a microdevice using dielectrophoresis.
    Singh P; Aubry N
    Electrophoresis; 2007 Feb; 28(4):644-57. PubMed ID: 17304498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced mixing of droplets during coalescence on a surface with a wettability gradient.
    Lai YH; Hsu MH; Yang JT
    Lab Chip; 2010 Nov; 10(22):3149-56. PubMed ID: 20922226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sliding of water droplets on the superhydrophobic surface with ZnO nanorods.
    Sakai M; Kono H; Nakajima A; Zhang X; Sakai H; Abe M; Fujishima A
    Langmuir; 2009 Dec; 25(24):14182-6. PubMed ID: 19527040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water motion and movement without sticking, weight loss and cross-contaminant in superhydrophobic glass tube.
    Yuan JJ; Jin RH
    Nanotechnology; 2010 Feb; 21(6):065704. PubMed ID: 20057021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic superhydrophobic and highly oleophobic cotton textiles.
    Hoefnagels HF; Wu D; de With G; Ming W
    Langmuir; 2007 Dec; 23(26):13158-63. PubMed ID: 17985939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating and dispensing micro/nanoliter droplets by superhydrophobic needle nozzles.
    Dong Z; Ma J; Jiang L
    ACS Nano; 2013 Nov; 7(11):10371-9. PubMed ID: 24116931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Levitation-free vibrated droplets: resonant oscillations of liquid marbles.
    McHale G; Elliott SJ; Newton MI; Herbertson DL; Esmer K
    Langmuir; 2009 Jan; 25(1):529-33. PubMed ID: 19115875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of liquids using superhydrophobic aerogels.
    Venkateswara Rao A; Kulkarni MM; Bhagat SD
    J Colloid Interface Sci; 2005 May; 285(1):413-8. PubMed ID: 15797440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control.
    Shirtcliffe NJ; McHale G; Newton MI
    Langmuir; 2009 Dec; 25(24):14121-8. PubMed ID: 20560556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaporation-induced particle microseparations inside droplets floating on a chip.
    Chang ST; Velev OD
    Langmuir; 2006 Feb; 22(4):1459-68. PubMed ID: 16460062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic deformation of microsize droplets in a microchannel induced by a transverse alternating electric field.
    Mochizuki T
    Langmuir; 2013 Oct; 29(41):12879-90. PubMed ID: 24090269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields.
    Grimm RL; Beauchamp JL
    J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.