These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 19924905)
1. Transient kinetic analysis of the interaction of L-serine with Escherichia coli D-3-phosphoglycerate dehydrogenase reveals the mechanism of V-type regulation and the order of effector binding. Burton RL; Chen S; Xu XL; Grant GA Biochemistry; 2009 Dec; 48(51):12242-51. PubMed ID: 19924905 [TBL] [Abstract][Full Text] [Related]
2. Transient kinetic analysis of L-serine interaction with Escherichia coli D-3-phosphoglycerate dehydrogenase containing amino acid mutations in the hinge regions. Grant GA Biochemistry; 2011 Apr; 50(14):2900-6. PubMed ID: 21391703 [TBL] [Abstract][Full Text] [Related]
3. Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase. Wang Q; Qi Y; Yin N; Lai L PLoS One; 2014; 9(4):e94829. PubMed ID: 24733054 [TBL] [Abstract][Full Text] [Related]
4. A stopped flow transient kinetic analysis of substrate binding and catalysis in Escherichia coli D-3-phosphoglycerate dehydrogenase. Burton RL; Hanes JW; Grant GA J Biol Chem; 2008 Oct; 283(44):29706-14. PubMed ID: 18776184 [TBL] [Abstract][Full Text] [Related]
5. Multiconformational states in phosphoglycerate dehydrogenase. Bell JK; Grant GA; Banaszak LJ Biochemistry; 2004 Mar; 43(12):3450-8. PubMed ID: 15035616 [TBL] [Abstract][Full Text] [Related]
6. Identification of amino acid residues contributing to the mechanism of cooperativity in Escherichia coli D-3-phosphoglycerate dehydrogenase. Grant GA; Hu Z; Xu XL Biochemistry; 2005 Dec; 44(51):16844-52. PubMed ID: 16363798 [TBL] [Abstract][Full Text] [Related]
7. The effect of hinge mutations on effector binding and domain rotation in Escherichia coli D-3-phosphoglycerate dehydrogenase. Dey S; Hu Z; Xu XL; Sacchettini JC; Grant GA J Biol Chem; 2007 Jun; 282(25):18418-18426. PubMed ID: 17459882 [TBL] [Abstract][Full Text] [Related]
8. Role of the anion-binding site in catalysis and regulation of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Burton RL; Chen S; Xu XL; Grant GA Biochemistry; 2009 Jun; 48(22):4808-15. PubMed ID: 19388702 [TBL] [Abstract][Full Text] [Related]
9. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Grant GA Arch Biochem Biophys; 2012 Mar; 519(2):175-85. PubMed ID: 22023909 [TBL] [Abstract][Full Text] [Related]
10. Cofactor binding to Escherichia coli D-3-phosphoglycerate dehydrogenase induces multiple conformations which alter effector binding. Grant GA; Hu Z; Xu XL J Biol Chem; 2002 Oct; 277(42):39548-53. PubMed ID: 12183470 [TBL] [Abstract][Full Text] [Related]
11. Hybrid tetramers reveal elements of cooperativity in Escherichia coli D-3-phosphoglycerate dehydrogenase. Grant GA; Hu Z; Xu XL J Biol Chem; 2003 May; 278(20):18170-6. PubMed ID: 12644455 [TBL] [Abstract][Full Text] [Related]
12. Quantitative relationships of site to site interaction in Escherichia coli D-3-phosphoglycerate dehydrogenase revealed by asymmetric hybrid tetramers. Grant GA; Xu XL; Hu Z J Biol Chem; 2004 Apr; 279(14):13452-60. PubMed ID: 14718528 [TBL] [Abstract][Full Text] [Related]
13. Specific interactions at the regulatory domain-substrate binding domain interface influence the cooperativity of inhibition and effector binding in Escherichia coli D-3-phosphoglycerate dehydrogenase. Grant GA; Hu Z; Xu XL J Biol Chem; 2001 Jan; 276(2):1078-83. PubMed ID: 11050089 [TBL] [Abstract][Full Text] [Related]
14. Transient kinetic studies on the allosteric transition of phosphoglycerate dehydrogenase. Dubrow R; Pizer LI J Biol Chem; 1977 Mar; 252(5):1527-38. PubMed ID: 320209 [TBL] [Abstract][Full Text] [Related]
15. The mechanism of velocity modulated allosteric regulation in D-3-phosphoglycerate dehydrogenase. Cross-linking adjacent regulatory domains with engineered disulfides mimics effector binding. Al-Rabiee R; Lee EJ; Grant GA J Biol Chem; 1996 May; 271(22):13013-7. PubMed ID: 8662776 [TBL] [Abstract][Full Text] [Related]
16. Elucidation of a Self-Sustaining Cycle in Escherichia coli l-Serine Biosynthesis That Results in the Conservation of the Coenzyme, NAD. Grant GA Biochemistry; 2018 Mar; 57(11):1798-1806. PubMed ID: 29494135 [TBL] [Abstract][Full Text] [Related]
17. Molecular and functional characterization of D-3-phosphoglycerate dehydrogenase in the serine biosynthetic pathway of the hyperthermophilic archaeon Sulfolobus tokodaii. Shimizu Y; Sakuraba H; Doi K; Ohshima T Arch Biochem Biophys; 2008 Feb; 470(2):120-8. PubMed ID: 18054776 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of velocity modulated allosteric regulation in D-3-phosphoglycerate dehydrogenase. Site-directed mutagenesis of effector binding site residues. Al-Rabiee R; Zhang Y; Grant GA J Biol Chem; 1996 Sep; 271(38):23235-8. PubMed ID: 8798520 [TBL] [Abstract][Full Text] [Related]
19. [Construction and characterization of Escherichia coli D-3-phosphoglycerate dehydrogenase mutants with feedback-inhibition relief]. Deng H; Chen C; Sun C; Wei C Sheng Wu Gong Cheng Xue Bao; 2016 Apr; 32(4):468-477. PubMed ID: 28853268 [TBL] [Abstract][Full Text] [Related]
20. Phosphate ion partially relieves the cooperativity of effector binding in D-3-phosphoglycerate dehydrogenase without altering the cooperativity of inhibition. Grant GA; Xu XL; Hu Z; Purvis AR Biochemistry; 1999 Dec; 38(50):16548-52. PubMed ID: 10600116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]