These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19924935)

  • 1. Thermodynamic analysis to assess the environmental impact of end-of-life recovery processing for nanotechnology products.
    Olapiriyakul S; Caudill RJ
    Environ Sci Technol; 2009 Nov; 43(21):8140-6. PubMed ID: 19924935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel process for recovering valuable metals from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Environ Sci Technol; 2009 Dec; 43(23):8974-8. PubMed ID: 19943675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic metrics for aggregation of natural resources in life cycle analysis: insight via application to some transportation fuels.
    Baral A; Bakshi BR
    Environ Sci Technol; 2010 Jan; 44(2):800-7. PubMed ID: 20020741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A material flow of lithium batteries in Taiwan.
    Chang TC; You SJ; Yu BS; Yao KF
    J Hazard Mater; 2009 Apr; 163(2-3):910-5. PubMed ID: 18723278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material and heavy metal balance in a recycling facility for home electrical appliances.
    Matsuto T; Jung CH; Tanaka N
    Waste Manag; 2004; 24(5):425-36. PubMed ID: 15120427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment.
    Balbus JM; Florini K; Denison RA; Walsh SA
    Ann N Y Acad Sci; 2006 Sep; 1076():331-42. PubMed ID: 17119213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.
    Majeau-Bettez G; Hawkins TR; Strømman AH
    Environ Sci Technol; 2011 May; 45(10):4548-54. PubMed ID: 21506538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waste battery treatment options: comparing their environmental performance.
    Briffaerts K; Spirinckx C; Van der Linden A; Vrancken K
    Waste Manag; 2009 Aug; 29(8):2321-31. PubMed ID: 19386482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical characterisation of spent rechargeable batteries.
    Vassura I; Morselli L; Bernardi E; Passarini F
    Waste Manag; 2009 Aug; 29(8):2332-5. PubMed ID: 19423325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A management system for end-of-life tyres: a Portuguese case study.
    Ferrão P; Ribeiro P; Silva P
    Waste Manag; 2008; 28(3):604-14. PubMed ID: 17482804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Appreciating the role of thermodynamics in LCA improvement analysis via an application to titanium dioxide nanoparticles.
    Grubb GF; Bakshi BR
    Environ Sci Technol; 2011 Apr; 45(7):3054-61. PubMed ID: 21361276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the influence of Environmental Impact Assessments on science and policy: an analysis of the Three Gorges Project.
    Tullos D
    J Environ Manage; 2009 Jul; 90 Suppl 3():S208-23. PubMed ID: 19026482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence-based integrated environmental solutions for secondary lead smelters: pollution prevention and waste minimization technologies and practices.
    Genaidy AM; Sequeira R; Tolaymat T; Kohler J; Rinder M
    Sci Total Environ; 2009 May; 407(10):3239-68. PubMed ID: 19232675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic evaluation of the resource consumption of active pharmaceutical ingredient production at three different levels.
    Van der Vorst G; Dewulf J; Aelterman W; De Witte B; Van Langenhove H
    Environ Sci Technol; 2011 Apr; 45(7):3040-6. PubMed ID: 21391625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined recovery process of metals in spent lithium-ion batteries.
    Li J; Shi P; Wang Z; Chen Y; Chang CC
    Chemosphere; 2009 Nov; 77(8):1132-6. PubMed ID: 19775724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of contamination by alloying elements in aluminum recycling.
    Nakajima K; Takeda O; Miki T; Matsubae K; Nakamura S; Nagasaka T
    Environ Sci Technol; 2010 Jul; 44(14):5594-600. PubMed ID: 20536230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes.
    Lupi C; Pasquali M; Dell'era A
    Waste Manag; 2005; 25(2):215-20. PubMed ID: 15737721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology.
    Hutchison JE
    ACS Nano; 2008 Mar; 2(3):395-402. PubMed ID: 19206562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential environmental impact of engineered nanomaterials.
    Colvin VL
    Nat Biotechnol; 2003 Oct; 21(10):1166-70. PubMed ID: 14520401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.