These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19924941)

  • 1. Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS).
    Liu J; Aruguete DM; Murayama M; Hochella MF
    Environ Sci Technol; 2009 Nov; 43(21):8178-83. PubMed ID: 19924941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route.
    Zhang C; Kang Z; Shen E; Wang E; Gao L; Luo F; Tian C; Wang C; Lan Y; Li J; Cao X
    J Phys Chem B; 2006 Jan; 110(1):184-9. PubMed ID: 16471519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition.
    Yang J; Elim HI; Zhang Q; Lee JY; Ji W
    J Am Chem Soc; 2006 Sep; 128(36):11921-6. PubMed ID: 16953633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids.
    Mikhlin Y; Vorobyev S; Romanchenko A; Karasev S; Karacharov A; Zharkov S
    Chemosphere; 2016 Mar; 147():60-6. PubMed ID: 26761598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).
    Weijma J; De Hoop K; Bosma W; Dijkman H
    Biotechnol Prog; 2002; 18(4):770-5. PubMed ID: 12153311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect.
    Schmidt J; Vogelsberger W
    J Phys Chem B; 2006 Mar; 110(9):3955-63. PubMed ID: 16509682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH.
    Lanzl CA; Baltrusaitis J; Cwiertny DM
    Langmuir; 2012 Nov; 28(45):15797-808. PubMed ID: 23078147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions.
    Bodnár M; Kjøniksen AL; Molnár RM; Hartmann JF; Daróczi L; Nyström B; Borbély J
    J Hazard Mater; 2008 May; 153(3):1185-92. PubMed ID: 17997032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic probability modeling to predict the environmental stability of nanoparticles in aqueous suspension.
    Mackay CE; Johns M; Salatas JH; Bessinger B; Perri M
    Integr Environ Assess Manag; 2006 Jul; 2(3):293-8. PubMed ID: 16869443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of artificially generated PbS aerosols and their use within a respiratory bioaccessibility test.
    Beeston MP; van Elteren JT; Selih VS; Fairhurst R
    Analyst; 2010 Feb; 135(2):351-7. PubMed ID: 20098770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ characterization of aluminum-containing mineral-microorganism aqueous suspensions using scanning transmission X-ray microscopy.
    Yoon TH; Johnson SB; Benzerara K; Doyle CS; Tyliszczak T; Shuh DK; Brown GE
    Langmuir; 2004 Nov; 20(24):10361-6. PubMed ID: 15544358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton absorption in as-synthesized mesoporous silica nanoparticles as a structure-function relationship probing mechanism.
    Strømme M; Atluri R; Brohede U; Frenning G; Garcia-Bennett AE
    Langmuir; 2009 Apr; 25(8):4306-10. PubMed ID: 19281159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals.
    Crisp MT; Tucker CJ; Rogers TL; Williams RO; Johnston KP
    J Control Release; 2007 Feb; 117(3):351-9. PubMed ID: 17239469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanorod dissolution quenched in the aggregated state.
    Rubasinghege G; Lentz RW; Park H; Scherer MM; Grassian VH
    Langmuir; 2010 Feb; 26(3):1524-7. PubMed ID: 19950935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: the effects of core size and shell thickness.
    van Embden J; Jasieniak J; Mulvaney P
    J Am Chem Soc; 2009 Oct; 131(40):14299-309. PubMed ID: 19754114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dissolution rates of SiO2 nanoparticles as a function of particle size.
    Diedrich T; Dybowska A; Schott J; Valsami-Jones E; Oelkers EH
    Environ Sci Technol; 2012 May; 46(9):4909-15. PubMed ID: 22482930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy.
    Franks R; Morefield S; Wen J; Liao D; Alvarado J; Strano M; Marsh C
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4404-7. PubMed ID: 19049033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution of fine and intermediate sized galena particles and their interactions with iron hydroxide colloids.
    Peng Y; Grano S
    J Colloid Interface Sci; 2010 Jul; 347(1):127-31. PubMed ID: 20381059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenic formation and growth of uraninite (UO₂).
    Lee SY; Baik MH; Choi JW
    Environ Sci Technol; 2010 Nov; 44(22):8409-14. PubMed ID: 20979351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.