BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19924941)

  • 1. Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS).
    Liu J; Aruguete DM; Murayama M; Hochella MF
    Environ Sci Technol; 2009 Nov; 43(21):8178-83. PubMed ID: 19924941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route.
    Zhang C; Kang Z; Shen E; Wang E; Gao L; Luo F; Tian C; Wang C; Lan Y; Li J; Cao X
    J Phys Chem B; 2006 Jan; 110(1):184-9. PubMed ID: 16471519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition.
    Yang J; Elim HI; Zhang Q; Lee JY; Ji W
    J Am Chem Soc; 2006 Sep; 128(36):11921-6. PubMed ID: 16953633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids.
    Mikhlin Y; Vorobyev S; Romanchenko A; Karasev S; Karacharov A; Zharkov S
    Chemosphere; 2016 Mar; 147():60-6. PubMed ID: 26761598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).
    Weijma J; De Hoop K; Bosma W; Dijkman H
    Biotechnol Prog; 2002; 18(4):770-5. PubMed ID: 12153311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect.
    Schmidt J; Vogelsberger W
    J Phys Chem B; 2006 Mar; 110(9):3955-63. PubMed ID: 16509682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH.
    Lanzl CA; Baltrusaitis J; Cwiertny DM
    Langmuir; 2012 Nov; 28(45):15797-808. PubMed ID: 23078147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions.
    Bodnár M; Kjøniksen AL; Molnár RM; Hartmann JF; Daróczi L; Nyström B; Borbély J
    J Hazard Mater; 2008 May; 153(3):1185-92. PubMed ID: 17997032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic probability modeling to predict the environmental stability of nanoparticles in aqueous suspension.
    Mackay CE; Johns M; Salatas JH; Bessinger B; Perri M
    Integr Environ Assess Manag; 2006 Jul; 2(3):293-8. PubMed ID: 16869443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of artificially generated PbS aerosols and their use within a respiratory bioaccessibility test.
    Beeston MP; van Elteren JT; Selih VS; Fairhurst R
    Analyst; 2010 Feb; 135(2):351-7. PubMed ID: 20098770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ characterization of aluminum-containing mineral-microorganism aqueous suspensions using scanning transmission X-ray microscopy.
    Yoon TH; Johnson SB; Benzerara K; Doyle CS; Tyliszczak T; Shuh DK; Brown GE
    Langmuir; 2004 Nov; 20(24):10361-6. PubMed ID: 15544358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton absorption in as-synthesized mesoporous silica nanoparticles as a structure-function relationship probing mechanism.
    Strømme M; Atluri R; Brohede U; Frenning G; Garcia-Bennett AE
    Langmuir; 2009 Apr; 25(8):4306-10. PubMed ID: 19281159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals.
    Crisp MT; Tucker CJ; Rogers TL; Williams RO; Johnston KP
    J Control Release; 2007 Feb; 117(3):351-9. PubMed ID: 17239469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanorod dissolution quenched in the aggregated state.
    Rubasinghege G; Lentz RW; Park H; Scherer MM; Grassian VH
    Langmuir; 2010 Feb; 26(3):1524-7. PubMed ID: 19950935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: the effects of core size and shell thickness.
    van Embden J; Jasieniak J; Mulvaney P
    J Am Chem Soc; 2009 Oct; 131(40):14299-309. PubMed ID: 19754114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dissolution rates of SiO2 nanoparticles as a function of particle size.
    Diedrich T; Dybowska A; Schott J; Valsami-Jones E; Oelkers EH
    Environ Sci Technol; 2012 May; 46(9):4909-15. PubMed ID: 22482930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy.
    Franks R; Morefield S; Wen J; Liao D; Alvarado J; Strano M; Marsh C
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4404-7. PubMed ID: 19049033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution of fine and intermediate sized galena particles and their interactions with iron hydroxide colloids.
    Peng Y; Grano S
    J Colloid Interface Sci; 2010 Jul; 347(1):127-31. PubMed ID: 20381059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenic formation and growth of uraninite (UO₂).
    Lee SY; Baik MH; Choi JW
    Environ Sci Technol; 2010 Nov; 44(22):8409-14. PubMed ID: 20979351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.