BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19925010)

  • 1. Lab-on-chip flow injection analysis system without an external pump and valves and integrated with an in line electrochemical detector.
    Chen IJ; Lindner E
    Anal Chem; 2009 Dec; 81(24):9955-60. PubMed ID: 19925010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.
    Phokharatkul D; Karuwan C; Lomas T; Nacapricha D; Wisitsoraat A; Tuantranont A
    Talanta; 2011 Jun; 84(5):1390-5. PubMed ID: 21641457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated in-channel structured polydimethylsiloxane microfluidic system for a lab-on-a-chip.
    Ra GS; Yoo JC; Kang CJ; Kim YS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4588-92. PubMed ID: 19049064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mini-electrochemical detector for microchip electrophoresis.
    Jiang L; Lu Y; Dai Z; Xie M; Lin B
    Lab Chip; 2005 Sep; 5(9):930-4. PubMed ID: 16100576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated microdroplet passive pumping platform for high-speed and packeted microfluidic flow applications.
    Resto PJ; Mogen BJ; Berthier E; Williams JC
    Lab Chip; 2010 Jan; 10(1):23-6. PubMed ID: 20024045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices.
    Resto PJ; Berthier E; Beebe DJ; Williams JC
    Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical microfluidic biosensor for the detection of nucleic acid sequences.
    Goral VN; Zaytseva NV; Baeumner AJ
    Lab Chip; 2006 Mar; 6(3):414-21. PubMed ID: 16511625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic system for planar patch clamp electrode arrays.
    Li X; Klemic KG; Reed MA; Sigworth FJ
    Nano Lett; 2006 Apr; 6(4):815-9. PubMed ID: 16608289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Microfluidic E-Tongue System Using Layer-by-Layer Films Deposited onto Interdigitated Electrodes Inside a Polydimethylsiloxane Microchannel.
    Braunger ML; Daikuzono CM; Riul A
    Methods Mol Biol; 2019; 2027():141-150. PubMed ID: 31309478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture.
    Zhou J; Ren K; Dai W; Zhao Y; Ryan D; Wu H
    Lab Chip; 2011 Jul; 11(13):2288-94. PubMed ID: 21603722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical pumping system for on-chip gradient generation.
    Xie J; Miao Y; Shih J; He Q; Liu J; Tai YC; Lee TD
    Anal Chem; 2004 Jul; 76(13):3756-63. PubMed ID: 15228351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.
    Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D
    Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain slice stimulation using a microfluidic network and standard perfusion chamber.
    Shaikh Mohammed J; Caicedo H; Fall CP; Eddington DT
    J Vis Exp; 2007; (8):302. PubMed ID: 18989411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A handy liquid metal based electroosmotic flow pump.
    Gao M; Gui L
    Lab Chip; 2014 Jun; 14(11):1866-72. PubMed ID: 24706096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.