These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 1992518)
41. Identification of the carotenoid present in the B-800-850 antenna complex from Rhodopseudomonas capsulata as that which responds electrochromically to transmembrane electric fields. Webster GD; Cogdell RJ; Lindsay JG Biochim Biophys Acta; 1980 Jul; 591(2):321-30. PubMed ID: 7397127 [TBL] [Abstract][Full Text] [Related]
42. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. Fidler AF; Harel E; Long PD; Engel GS J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993 [TBL] [Abstract][Full Text] [Related]
43. Pigment-protein complexes of purple photosynthetic bacteria: an overview. Thornber JP; Cogdell RJ; Pierson BK; Seftor RE J Cell Biochem; 1983; 23(1-4):159-69. PubMed ID: 6373795 [TBL] [Abstract][Full Text] [Related]
44. Comparison of permeant ion uptake and carotenoid band shift as methods for determining the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga. Ferguson SJ; Jones OT; Kell DB; Sorgato MC Biochem J; 1979 Apr; 180(1):75-85. PubMed ID: 226068 [TBL] [Abstract][Full Text] [Related]
45. Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides. Trautman JK; Shreve AP; Violette CA; Frank HA; Owens TG; Albrecht AC Proc Natl Acad Sci U S A; 1990 Jan; 87(1):215-9. PubMed ID: 2404276 [TBL] [Abstract][Full Text] [Related]
46. Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene. Maiuri M; Polli D; Brida D; Lüer L; LaFountain AM; Fuciman M; Cogdell RJ; Frank HA; Cerullo G Phys Chem Chem Phys; 2012 May; 14(18):6312-9. PubMed ID: 22331127 [TBL] [Abstract][Full Text] [Related]
47. An Alternative Pathway of Light-Induced Transmembrane Electron Transfer in Photosynthetic Reaction Centers of Rhodobacter sphaeroides. Khatypov RA; Khristin AM; Fufina TY; Shuvalov VA Biochemistry (Mosc); 2017 Jun; 82(6):692-697. PubMed ID: 28601078 [TBL] [Abstract][Full Text] [Related]
48. Spectral and functional comparisons between the carotenoids of the two antenna complexes of Rhodopseudomonas capsulata. Scolnik PA; Zannoni D; Marrs BL Biochim Biophys Acta; 1980 Dec; 593(2):230-40. PubMed ID: 7236633 [TBL] [Abstract][Full Text] [Related]
49. The type, amount, location, and energy transfer properties of the carotenoid in reaction centers from Rhodopseudomonas sphaeroides. Cogdell RJ; Parson WW; Kerr MA Biochim Biophys Acta; 1976 Apr; 430(1):83-93. PubMed ID: 1083252 [TBL] [Abstract][Full Text] [Related]
50. Reconstitution of carotenoids into the light-harvesting complex B800-850 of Chromatium minutissimum. Toropygina OA; Makhneva ZK; Moskalenko AA Biochemistry (Mosc); 2003 Aug; 68(8):901-11. PubMed ID: 12948391 [TBL] [Abstract][Full Text] [Related]
51. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre. Grayson KJ; Faries KM; Huang X; Qian P; Dilbeck P; Martin EC; Hitchcock A; Vasilev C; Yuen JM; Niedzwiedzki DM; Leggett GJ; Holten D; Kirmaier C; Neil Hunter C Nat Commun; 2017 Jan; 8():13972. PubMed ID: 28054547 [TBL] [Abstract][Full Text] [Related]
52. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides. Hörvin Billsten H; Herek JL; Garcia-Asua G; Hashøj L; Polívka T; Hunter CN; Sundström V Biochemistry; 2002 Mar; 41(12):4127-36. PubMed ID: 11900556 [TBL] [Abstract][Full Text] [Related]
53. Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex. Crouch LI; Jones MR Biochim Biophys Acta; 2012 Feb; 1817(2):336-52. PubMed ID: 22079525 [TBL] [Abstract][Full Text] [Related]
54. Surface potential on the periplasmic side of the photosynthetic membrane of Rhodopseudomonas sphaeroides. Matsuura K; Masamoto K; Itoh S; Nishimura M Biochim Biophys Acta; 1980 Aug; 592(1):121-9. PubMed ID: 6967328 [No Abstract] [Full Text] [Related]
55. Electrochromic responses of carotenoid absorbance bands in purified light-harvesting complexes from Rhodobacter capsulatus reconstituted into liposomes. Goodwin MG; Jackson JB Biochim Biophys Acta; 1993 Sep; 1144(2):191-8. PubMed ID: 8369337 [TBL] [Abstract][Full Text] [Related]
56. Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Cerullo G; Polli D; Lanzani G; De Silvestri S; Hashimoto H; Cogdell RJ Science; 2002 Dec; 298(5602):2395-8. PubMed ID: 12493917 [TBL] [Abstract][Full Text] [Related]
57. Carotenoid Singlet Fission Reactions in Bacterial Light Harvesting Complexes As Revealed by Triplet Excitation Profiles. Yu J; Fu LM; Yu LJ; Shi Y; Wang P; Wang-Otomo ZY; Zhang JP J Am Chem Soc; 2017 Nov; 139(44):15984-15993. PubMed ID: 29053262 [TBL] [Abstract][Full Text] [Related]
58. Further evidence for dissipative energy migration via triplet states in photosynthesis. The protective mechanism of carotenoids in Rhodopseudomonas spheroides chromatophores. Renger G; Wolff C Biochim Biophys Acta; 1977 Apr; 460(1):47-57. PubMed ID: 300630 [TBL] [Abstract][Full Text] [Related]
59. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria. Ashikhmin A; Makhneva Z; Bolshakov M; Moskalenko A J Photochem Photobiol B; 2017 May; 170():99-107. PubMed ID: 28411470 [TBL] [Abstract][Full Text] [Related]
60. A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions. Kikuchi J; Asakura T; Loach PA; Parkes-Loach PS; Shimada K; Hunter CN; Conroy MJ; Williamson MP Biopolymers; 1999 Apr; 49(5):361-72. PubMed ID: 10101971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]