BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19925455)

  • 1. Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2.
    Pagano MA; Marin O; Cozza G; Sarno S; Meggio F; Treharne KJ; Mehta A; Pinna LA
    Biochem J; 2010 Jan; 426(1):19-29. PubMed ID: 19925455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis.
    Pagano MA; Arrigoni G; Marin O; Sarno S; Meggio F; Treharne KJ; Mehta A; Pinna LA
    Biochemistry; 2008 Jul; 47(30):7925-36. PubMed ID: 18597485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508.
    Cesaro L; Marin O; Venerando A; Donella-Deana A; Pinna LA
    Amino Acids; 2013 Dec; 45(6):1423-9. PubMed ID: 24178769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site.
    Treharne KJ; Crawford RM; Xu Z; Chen JH; Best OG; Schulte EA; Gruenert DC; Wilson SM; Sheppard DN; Kunzelmann K; Mehta A
    J Biol Chem; 2007 Apr; 282(14):10804-13. PubMed ID: 17289674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR.
    Treharne KJ; Xu Z; Chen JH; Best OG; Cassidy DM; Gruenert DC; Hegyi P; Gray MA; Sheppard DN; Kunzelmann K; Mehta A
    Cell Physiol Biochem; 2009; 24(5-6):347-60. PubMed ID: 19910675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA; Ko YH; Pedersen PL; Mildvan AS
    Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation.
    Venerando A; Franchin C; Cant N; Cozza G; Pagano MA; Tosoni K; Al-Zahrani A; Arrigoni G; Ford RC; Mehta A; Pinna LA
    PLoS One; 2013; 8(9):e74232. PubMed ID: 24058532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR.
    D'Amore C; Borgo C; Bosello-Travain V; Vilardell J; Salizzato V; Pinna LA; Venerando A; Salvi M
    Biochim Biophys Acta Mol Basis Dis; 2020 Mar; 1866(3):165611. PubMed ID: 31740403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity.
    Luz S; Kongsuphol P; Mendes AI; Romeiras F; Sousa M; Schreiber R; Matos P; Jordan P; Mehta A; Amaral MD; Kunzelmann K; Farinha CM
    Mol Cell Biol; 2011 Nov; 31(22):4392-404. PubMed ID: 21930781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side chain and backbone contributions of Phe508 to CFTR folding.
    Thibodeau PH; Brautigam CA; Machius M; Thomas PJ
    Nat Struct Mol Biol; 2005 Jan; 12(1):10-6. PubMed ID: 15619636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508.
    DeCarvalho AC; Gansheroff LJ; Teem JL
    J Biol Chem; 2002 Sep; 277(39):35896-905. PubMed ID: 12110684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
    Du K; Sharma M; Lukacs GL
    Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of the Delta phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine.
    Robert R; Carlile GW; Liao J; Balghi H; Lesimple P; Liu N; Kus B; Rotin D; Wilke M; de Jonge HR; Scholte BJ; Thomas DY; Hanrahan JW
    Mol Pharmacol; 2010 Jun; 77(6):922-30. PubMed ID: 20200141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A "SYDE" effect of hierarchical phosphorylation: possible relevance to the cystic fibrosis basic defect.
    Venerando A; Cesaro L; Marin O; Donella-Deana A; Pinna LA
    Cell Mol Life Sci; 2014 Jun; 71(12):2193-6. PubMed ID: 24566881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone.
    Scott-Ward TS; Amaral MD
    FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression.
    Venerando A; Pagano MA; Tosoni K; Meggio F; Cassidy D; Stobbart M; Pinna LA; Mehta A
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Oct; 384(4-5):473-88. PubMed ID: 21607646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis.
    Thibodeau PH; Richardson JM; Wang W; Millen L; Watson J; Mendoza JL; Du K; Fischman S; Senderowitz H; Lukacs GL; Kirk K; Thomas PJ
    J Biol Chem; 2010 Nov; 285(46):35825-35. PubMed ID: 20667826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven.
    Raaf J; Brunstein E; Issinger OG; Niefind K
    Protein Sci; 2008 Dec; 17(12):2180-6. PubMed ID: 18824508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proteomics analysis of CK2β
    Borgo C; Franchin C; Cesaro L; Zaramella S; Arrigoni G; Salvi M; Pinna LA
    FEBS J; 2019 Apr; 286(8):1561-1575. PubMed ID: 30834696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between CK2α and CK2β, the subunits of protein kinase CK2: thermodynamic contributions of key residues on the CK2α surface.
    Raaf J; Bischoff N; Klopffleisch K; Brunstein E; Olsen BB; Vilk G; Litchfield DW; Issinger OG; Niefind K
    Biochemistry; 2011 Feb; 50(4):512-22. PubMed ID: 21142136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.