These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 199255)

  • 1. The structural transitions of erythrocyte membranes induced by cyclic AMP.
    Konev SV; Volotovskii ID; Finin VS; Kulikov AV; Kirillov VA; Zaichkin EI
    Biochim Biophys Acta; 1977 Oct; 470(2):230-41. PubMed ID: 199255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of the critical fragmentation of erythrocyte membranes].
    Konev SV; Finin VS; Volotovskiĭ ID; Kirillov VA
    Tsitologiia; 1978 Sep; 20(9):1060-4. PubMed ID: 214916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spin lable study of cyclic AMP-induced alteration in erythrocyte membranes].
    Volotovskiĭ ID; Finin VS; Kulikov AV; Konev SV
    Dokl Akad Nauk SSSR; 1977; 234(4):943-6. PubMed ID: 195782
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membrane. A 31P NMR and fluorescence study.
    Cullis PR; Grathwohl C
    Biochim Biophys Acta; 1977 Dec; 471(2):213-26. PubMed ID: 921979
    [No Abstract]   [Full Text] [Related]  

  • 5. 1,N6-Etheno-2-aza-adenosine 3', 5'-cyclic phosphate: human erythrocyte membrane binding and activation of membrane protein kinase.
    Tsukamoto T; Sonenberg M
    J Cyclic Nucleotide Res; 1979; 5(2):153-9. PubMed ID: 221554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP increase the Na+ permeability of the avian erythrocyte membrane by a process which does not involve protein phosphorylation.
    Weller M; Laing W
    Mol Cell Biochem; 1978 Jun; 20(2):119-24. PubMed ID: 209312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-fracture electron microscopy of human erythrocytes lacking the major membrane sialoglycoprotein.
    Bächi T; Whiting K; Tanner MJ; Metaxas MN; Anstee DJ
    Biochim Biophys Acta; 1977 Feb; 464(3):635-9. PubMed ID: 836829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microscopic observation of the aggregation of membrane proteins in human erythrocyte by melittin.
    Hui SW; Stewart CM; Cherry RJ
    Biochim Biophys Acta; 1990 Apr; 1023(3):335-40. PubMed ID: 2334727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of glycophorin on the surface of human erythrocyte membranes and its association with intramembrane particles: an immunochemical and freeze-fracture study of normal and En(a-) erythrocytes.
    Gahmberg CG; Taurén G; Virtanen I; Wartiovaara J
    J Supramol Struct; 1978; 8(3):337-47. PubMed ID: 723269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The uptake of cyclic AMP by human erythrocytes and its effect on membrane phosphorylation.
    Thomas EL; King LE; Morrison M
    Arch Biochem Biophys; 1979 Sep; 196(2):459-64. PubMed ID: 225996
    [No Abstract]   [Full Text] [Related]  

  • 11. [The ultrastructural and dynamic characteristics of erythrocyte membranes. The effect of the physiological status and temperature].
    Repin NV; Repina SV
    Tsitologiia; 1990; 32(11):1094-8. PubMed ID: 1965519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasmia membranes of Epidermophyton, Saccharomyces and red complex-induced membrane lesions.
    Kitajima Y; Sekiya T; Nozawa Y
    Biochim Biophys Acta; 1976 Dec; 455(2):452-65. PubMed ID: 793632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-fracture characterization of 'young' and 'old' human erythrocytes.
    Fischbeck KH; Bonilla E; Schotland DL
    Biochim Biophys Acta; 1982 Feb; 685(2):207-10. PubMed ID: 7059602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chlorpromazine on proteins in human erythrocyte membranes as inferred from spin labeling and biochemical analyses.
    Benga G; Ionescu M; Popescu O; Pop VI
    Mol Pharmacol; 1983 May; 23(3):771-8. PubMed ID: 6306435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and thermotropic phase behaviour of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes.
    Quinn PJ; Tessier C; Rainteau D; Koumanov KS; Wolf C
    Biochim Biophys Acta; 2005 Jul; 1713(1):5-14. PubMed ID: 15963456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of cAMP on the structural and functional properties of the erythrocytes].
    Finin VS; Volotovskiĭ ID; Konev SV
    Tsitologiia; 1978 Aug; 20(8):947-51. PubMed ID: 214914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viral and non-viral induced fusion of pronase-digested human erythrocyte ghosts.
    Laster Y; Lalazar A; Loyter A
    Biochim Biophys Acta; 1979 Mar; 551(2):282-94. PubMed ID: 217432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of human erythrocyte plasma membranes by perfringolysin O as revealed by freeze-fracture electron microscopy. Studies on Clostridium perfringens exotoxins V.
    Mitsui K; Sekiya T; Nozawa Y; Hase J
    Biochim Biophys Acta; 1979 Jun; 554(1):68-75. PubMed ID: 222322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential phosphorylation of band 3 and glycophorin in intact and extracted erythrocyte membranes.
    Hosey MM; Tao M
    J Supramol Struct; 1977; 6(1):61-75. PubMed ID: 197317
    [No Abstract]   [Full Text] [Related]  

  • 20. Changes of the asymmetrical particle distribution in erythrocyte membranes.
    Richter W
    Acta Histochem Suppl; 1981; 23():157-63. PubMed ID: 6784160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.