These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19926211)

  • 1. Gypsum and organic matter distribution in a mixed construction and demolition waste sorting process and their possible removal from outputs.
    Montero A; Tojo Y; Matsuo T; Matsuto T; Yamada M; Asakura H; Ono Y
    J Hazard Mater; 2010 Mar; 175(1-3):747-53. PubMed ID: 19926211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills.
    Plaza C; Xu Q; Townsend T; Bitton G; Booth M
    J Environ Manage; 2007 Aug; 84(3):314-22. PubMed ID: 16890345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.
    Mulder E; de Jong TP; Feenstra L
    Waste Manag; 2007; 27(10):1408-15. PubMed ID: 17532617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of fine processed construction and demolition waste in Japan and method to obtain fines having low gypsum component and wood contents.
    Asakura H; Watanabe Y; Ono Y; Yamada M; Inoue Y; Alfaro AM
    Waste Manag Res; 2010 Jul; 28(7):634-46. PubMed ID: 19748940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological sulfate removal from gypsum contaminated construction and demolition debris.
    Kijjanapanich P; Annachhatre AP; Esposito G; van Hullebusch ED; Lens PN
    J Environ Manage; 2013 Dec; 131():82-91. PubMed ID: 24149113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of waste gypsum to replace natural gypsum as set retarders in portland cement.
    Chandara C; Azizli KA; Ahmad ZA; Sakai E
    Waste Manag; 2009 May; 29(5):1675-9. PubMed ID: 19131236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the components removed in loss on ignition test of sandy crushed construction and demolition waste.
    Asakura H; Yamada M; Inoue Y; Watanabe Y; Ono Y
    Waste Manag Res; 2010 Jan; 28(1):11-9. PubMed ID: 19710117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systems analysis tool for construction and demolition wastes management.
    Wang JY; Touran A; Christoforou C; Fadlalla H
    Waste Manag; 2004; 24(10):989-97. PubMed ID: 15567664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of gypsum waste in ceramic block production: Proposal for a minimal battery of tests to evaluate technical and environmental viability of this recycling process.
    Godinho-Castro AP; Testolin RC; Janke L; Corrêa AX; Radetski CM
    Waste Manag; 2012 Jan; 32(1):153-7. PubMed ID: 21959139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of dry and wet digestion for solid waste.
    Luning L; van Zundert EH; Brinkmann AJ
    Water Sci Technol; 2003; 48(4):15-20. PubMed ID: 14531417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indicators to assess the recovery of natural resources contained in demolition waste.
    Roussat N; Méhu J; Dujet C
    Waste Manag Res; 2009 Mar; 27(2):159-66. PubMed ID: 19244415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of moisture content determination in the environmental characterisation of FGD gypsum for its disposal in landfills.
    Alvarez-Ayuso E; Querol X; Tomás A
    J Hazard Mater; 2008 May; 153(1-2):544-50. PubMed ID: 17931770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal plasma technology for the treatment of wastes: a critical review.
    Gomez E; Rani DA; Cheeseman CR; Deegan D; Wise M; Boccaccini AR
    J Hazard Mater; 2009 Jan; 161(2-3):614-26. PubMed ID: 18499345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag; 2014 Nov; 34(11):2163-70. PubMed ID: 25074716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing a recycling process of SMC composite waste.
    Perrin D; Clerc L; Leroy E; Lopez-Cuesta JM; Bergeret A
    Waste Manag; 2008; 28(3):541-8. PubMed ID: 17611098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of waste glass as a partial replacement for fine aggregate in concrete.
    Ismail ZZ; Al-Hashmi EA
    Waste Manag; 2009 Feb; 29(2):655-9. PubMed ID: 18848773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.
    Yang K; Xu Q; Townsend TG; Chadik P; Bitton G; Booth M
    J Air Waste Manag Assoc; 2006 Aug; 56(8):1130-8. PubMed ID: 16933645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness of Hong Kong's Construction Waste Disposal Charging Scheme.
    Hao JL; Hills MJ; Tam VW
    Waste Manag Res; 2008 Dec; 26(6):553-8. PubMed ID: 19039072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental management of construction and demolition waste in Kuwait.
    Kartam N; Al-Mutairi N; Al-Ghusain I; Al-Humoud J
    Waste Manag; 2004; 24(10):1049-59. PubMed ID: 15567670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.