BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19926536)

  • 1. Carbon nanotube-enhanced cell electropermeabilisation.
    Raffa V; Ciofani G; Vittorio O; Pensabene V; Cuschieri A
    Bioelectrochemistry; 2010 Aug; 79(1):136-41. PubMed ID: 19926536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced low voltage cell electropermeabilization by boron nitride nanotubes.
    Raffa V; Ciofani G; Cuschieri A
    Nanotechnology; 2009 Feb; 20(7):075104. PubMed ID: 19417408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field-induced translocation of single-stranded DNA through a polarized carbon nanotube membrane.
    Xie Y; Kong Y; Soh AK; Gao H
    J Chem Phys; 2007 Dec; 127(22):225101. PubMed ID: 18081421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Carbon Nanotube-Based Enhancement of Cellular Electroporation under Nanosecond Pulsed Electric Fields.
    Mi Y; Liu Q; Li P; Xu J
    Biomed Res Int; 2019; 2019():9654583. PubMed ID: 31930142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell electroporation by CNT-featured microfluidic chip.
    Shahini M; Yeow JT
    Lab Chip; 2013 Jul; 13(13):2585-90. PubMed ID: 23511307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the efficiency of cell membrane electroporation using pulsed ac fields.
    Chen C; Evans JA; Robinson MP; Smye SW; O'Toole P
    Phys Med Biol; 2008 Sep; 53(17):4747-57. PubMed ID: 18701769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.
    Su J; Guo H
    ACS Nano; 2011 Jan; 5(1):351-9. PubMed ID: 21162530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional.
    Su J; Guo H
    J Chem Phys; 2011 Jun; 134(24):244513. PubMed ID: 21721649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes.
    Lacerda L; Russier J; Pastorin G; Herrero MA; Venturelli E; Dumortier H; Al-Jamal KT; Prato M; Kostarelos K; Bianco A
    Biomaterials; 2012 Apr; 33(11):3334-43. PubMed ID: 22289266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumour cell membrane poration and ablation by pulsed low-intensity electric field with carbon nanotubes.
    Wang L; Liu D; Zhou R; Wang Z; Cuschieri A
    Int J Mol Sci; 2015 Mar; 16(4):6890-901. PubMed ID: 25822874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the electroporation in the field calculation in biological tissues.
    Ramos A
    Artif Organs; 2005 Jun; 29(6):510-3. PubMed ID: 15926990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Permeabilization of tumor cells induced by pulsed electric fields in vitro].
    Andriianov IuV; Andriianova ON; Golovanov MV; Dobrynin IaV; Kozodoĭ PV; Smirnov VP
    Biofizika; 2002; 47(3):524-30. PubMed ID: 12068611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study for cell electroporation detection and separation by means of dielectrophoresis.
    Oblak J; Krizaj D; Amon S; Macek-Lebar A; Miklavcic D
    Bioelectrochemistry; 2007 Nov; 71(2):164-71. PubMed ID: 17509948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.
    Shahini M; Yeow JT
    Nanotechnology; 2011 Aug; 22(32):325705. PubMed ID: 21775777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals.
    Rajasekharan R; Dai Q; Wilkinson TD
    Appl Opt; 2010 Apr; 49(11):2099-104. PubMed ID: 20390012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters.
    Kim JW; Shashkov EV; Galanzha EI; Kotagiri N; Zharov VP
    Lasers Surg Med; 2007 Aug; 39(7):622-34. PubMed ID: 17868103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model.
    VanHandel M; Alizadeh D; Zhang L; Kateb B; Bronikowski M; Manohara H; Badie B
    J Neuroimmunol; 2009 Mar; 208(1-2):3-9. PubMed ID: 19181390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications.
    Misra SK; Ohashi F; Valappil SP; Knowles JC; Roy I; Silva SR; Salih V; Boccaccini AR
    Acta Biomater; 2010 Mar; 6(3):735-42. PubMed ID: 19800427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges.
    Kim SK; Kim JH; Kim KP; Chung TD
    Anal Chem; 2007 Oct; 79(20):7761-6. PubMed ID: 17874852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.